
INDOOR 3D INTERACTIVE ASSET DETECTION USING A SMARTPHONE

Revekka Kostoeva1 , Rishi Upadhyay1, Yersultan Sapar1, and Avideh Zakhor1

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

{rkostoeva, rishi.upadhyay, yersultan, avz}@berkeley.edu

Keywords: Asset Management, Asset Detection, Asset Recognition, Asset Localization, Augmented Reality, Building Information

Modelling, Mobile Mapping, Indoor Mapping

ABSTRACT

Building floor plans with locations of safety, security and energy assets such as IoT sensors, thermostats, fire sprinklers, EXIT signs,

fire alarms, smoke detectors, routers etc. are vital for climate control, emergency security, safety, and maintenance of building

infrastructure. Existing approaches to building survey are manual, and usually involve an operator with a clipboard and pen, or a tablet

enumerating and localizing assets in each room. In this paper, we propose an interactive method for a human operator to use an app

on a smart phone to (a) create the 2D layout of a room, (b) detect assets of interest, and (c) localize them within the layout. We use

deep learning methods to train a neural network to recognize assets of interest, and use human in the loop interactive methods to correct

erroneous recognitions by the networks. These corrections are then used to improve the accuracy of the system over time as the

inspector moves from one room to another in a given building or from one building to the next; this progressive training and testing

mechanism makes our system useful in building inspection scenarios where a given class of assets in a building are same instantiation

of that object category, thus reducing the problem to instance, rather than category recognition. Experiments show our proposed method

to achieve accuracy rate of 76% for testing 102 objects across 10 classes.

1. INTRODUCTION

Building floor plans with locations of safety, security and energy

assets such as Internet of Things (IoT) sensors, thermostats, fire

sprinklers, EXIT signs, fire alarms, smoke detectors, routers etc.

are vital for asset management, climate control, emergency

security, safety, and maintenance of building infrastructure

(Minoli et al., 2017). Existing approaches to building survey are

manual, and usually involve an operator with a clipboard and a

pen, or a tablet, enumerating and localizing assets in each room.

As such, the process is tedious, time consuming, and error prone.

Also, it does not result in any contextual data i.e. the proximity

and relationship between the sensors, and the proximity and

relationship between the assets and the room (Asplund et al.,

2018), (Wagner et al., 2003), (LaFlamme et al., 2006).

In this paper, we propose an interactive method for a human

operator to use an app on a smartphone to (a) create the 2D layout

of a room, (b) detect assets of interest, and (c) localize them

within the layout. The output is the layout of each room in a

building with the location of each asset marked in 2D and 3D in

the layout, and an associated picture for each asset. This “as

built” recovery of the assets in a building can be used in Building

Information Modeling (BIM) of buildings by architects, owners,

construction firms and facility managers (Boyes et al., 2017).

Furthermore, it can be integrated with Facilities Management

(FM) software tools such as TRIRIGA from IBM or Archibus.

The driving force behind our approach is the ubiquity of

smartphones, and advances in machine learning and augmented

reality (AR) on mobile platforms such as smartphones. Today’s

mobile devices are equipped with powerful processors and a

myriad of sensors such as accelerometers, gyroscopes, and high-

resolution cameras (Zhang et al., 2018). Thus, they are well

suited for AR tracking systems and applications as well as

running object detection models (Carmigniani, 2011), (Craig,

2013). Furthermore, tracking is now scalable to large

environments (Zhang, 2001).

AR allows the placement of virtual objects in the real world

(Ruan et al., 2012) by assigning anchors tied to a location in the

real world (Azuma, 1997), (Azuma et al., 2001). By integrating

object detection with AR, it is possible to develop a marker-less

based system to free the user from the need to use QR codes or

other types of markers to extract a 3D position of assets (Yan,

2014).

The outline of this paper is as follows. In Section 2, we provide

an overview of our system. Section 3 describes the user interface

and operation of the app, and Section 4 is on the deep learning

methods used in our system. Section 5 includes experimental

results, and Section 6 is conclusions and future work.

2. SYSTEM OVERVIEW

Our goal is to develop a smartphone based app which can be used

for fast, and semi-automated asset detection and localization

during building survey by inspectors and auditors. In this paper,

we are concerned with 10 classes of assets related to safety,

security and comfort of users, but our method can be extended to

a much larger class of assets. In particular, our system in this

paper is designed to recognize the following class objects: router,

fire sprinkler, fire alarm, fire alarm handle, EXIT sign, cardkey

reader, light switch, emergency lights, fire extinguisher, and

outlet.

To automatically detect assets, we leverage existing advances in

deep learning. Broadly speaking, there are two general methods

for applying machine learning methods to object detection:

instance recognition and category recognition. Instance

recognition refers to situations where one is interested in finding

all instances of a particular brand and model number of a given

asset such as “Honeywell 1231304 programmable 7-day

thermostat” (Zhang et al., 2006). This is in contrast with category

recognition whereby one is interested in finding all objects in the

same category regardless of brand or model number. An example

of category recognition in the building context would be to find

all thermostats inside a building regardless of their brand or

model number (Wang et al., 2006). Both problems require

training neural networks with examples of the object to be

detected. As expected, category recognition is more involved and

requires a significantly larger number of heterogeneous training

examples than instance recognition.

For our particular application of surveying a building and

detecting and localizing assets of interests, a number of

considerations need to be taken into account in choosing between

instance and category recognition. To begin with, the number of

publicly available training examples for our desired class of

objects is small, making category recognition less attractive. For

example, the picture of a fire extinguisher found in the public

image databases Google shown in Figure 1b is quite different

from a picture of an installed fire extinguisher in an actual

building taken under realistic lighting conditions, as shown in

Figure 1a. As such, it is not possible to rely solely on publicly

available image databases for training the models for our

application. Furthermore, the assets found inside a given building

are usually limited to few brands/models and as such are quite

amenable to instance recognition. Specifically, one can envision

using instances of particular assets inside a building to construct

an instance recognition engine, which is enhanced as the

inspector progressively adds new examples of the same instance

as he or she visits more rooms inside a given building or more

buildings with similar devices in a campus. This bootstrapping

strategy improves the recognition accuracy of the instance

recognition model over time, and can also be used as a starting

point of a category recognition model to be used in this or other

applications.

(a) (b)

Figure 1. An example of fire extinguisher (a) captured by the

operator in an actual room; (b) from Google Image Database.

3. USER EXPERIENCE

We start with the user experience in creating the layout for each

room, and then describe the way assets in a given room are

tagged, located and documented.

3.1 Layout Generation

Upon launching the app, the user first creates the layout of the

room and then localizes the assets within the room. There are

multiple approaches to creating the layout of a room. One way is

to point the viewfinder on the smartphone to each vertical wall to

detect it, compute the equation of the plane for that wall, find the

intersection of those planes to find the layout, and then project

them into the x-z horizontal plane to create a 2D layout. To

extend the layout to 3D, we can detect the plane associated with

the ceiling and find its intersection with the remaining vertical

planes. We found this method to be error prone and inaccurate.

Rather, we opt to use a simpler approach by instructing the user

to click on the corners of the room, in a clockwise or counter-

clockwise manner to generate the 2D layout. To extrude to 3D

the user can also place an anchor on the ground and another one

right above it on the ceiling to extract the approximate room

height. In both approaches we take advantage of the positioning

and tracking capabilities of modern smartphones via their AR

capabilities.

3.2 Asset Documentation

The initial recognition model for a given building can either be

generated from previously inspected buildings, or it can be made

in situ from the assets of the building under consideration itself.

In this paper, we take the latter approach in our experiments. As

mentioned earlier, this initial recognition model is refined as the

operator progresses from room to room inside a given building.

Once the layout for a given room is created, the work flow of our

system for detecting and localizing assets in that room is as

follows: the user finds the asset through the phone viewfinder and

taps on the smartphone screen. The application takes a screenshot

of the viewfinder, which is run through the neural network on the

smartphone, detecting and classifying assets by assigning a

probability to each of the N classes of objects it has been trained

on. The most likely class, together with its associated probability

or confidence is then displayed on the screen. The human

operator will then either confirm or dis-validate the auto-

recognition results. In the latter case, a dropdown menu with all

categories of assets is displayed so that the user can choose the

correct class, localize the asset, and draw its associated bounding

box. The final output is a 2D layout of a room superimposed with

the location of the detected assets.

Figure 2 shows an example of the above interactive process. The

user points the viewfinder on the app to the object of interest and

taps on the screen to capture a picture to be input to the

recognition engine, as shown in Figures 2a and 2b for an outlet

and a light switch respectively. The recognition engine then

outputs the category with the highest confidence or probability

and puts an AR anchor on that object based on the 3D position of

that object in space. As seen, for the objects in Figures 2a and 2b

the confidence is 0.92 and 0.87 respectively, and the detected

category by the system is correct in both cases. Figure 2c shows

an example of an outlet which has erroneously been detected by

the recognition system to be a light switch. As seen, the

confidence reported by the system is 9%. In this case, the user

clicks on the “UNDO” button at the bottom of the screen, in

which case a list of alternate objects in a dropdown menu shown

in Figure 2d is presented to the user, giving a chance for the user

to correct the error by choosing the correct category of light

switch. Once the erroneous category is chosen, the user is given

a chance to place the anchor in the right location on the image as

shown in Figure 2e, and draw the corresponding bounding box

for the object as shown in Figure 2f.

Note that the location of the anchor is not only registered in the

2D image as a feedback to the user, but also in a fixed 3D

coordinate system for all objects, which is also registered with

the floor plan the user generates for the room at the outset. The

final output is a 2D or 3D layout of a room superimposed with

the location of the detected assets, where the correctly detected

and classified assets are displayed in green and misclassified

assets are displayed in red, as seen in Figure 3.

Figure 2: Screenshots of our system showing (a) correct

detection of an outlet with confidence level of 93%; (b) correct

detection of a light switch with confidence level of 87%; (c)

incorrect detection of an outlet as lighting switch with

confidence level of 9.7%; (d) dropdown menu showing the

incorrect detection, which the user can correct; (e) user placing

anchor in the correct place; (f) user drawing a bounding box

around the object to enable the system to use this image for

future training.

Regardless of whether the system detects objects correctly or

erroneously, all positive and negative examples generated during

the human interaction process are saved and used for future

training of the learning algorithm. It is this bootstrapping activity

that makes our system more valuable over time as more operators

use it. In this way, it is somewhat similar to search engines whose

performance improves over time as more users

use them. Our ultimate goal is to create an algorithmic pipeline

that requires little new training, creates few false alarms, has low

miss rate, and high precision and accuracy.

 (a)

 (b)

Figure 3: 2D floor plan of a room with (a) all correctly

classified assets; (b) correctly detected assets (green) and

misclassified/incorrectly detected (red) assets.

4. DEEP LEARNING PIPELINE

Our approach for detecting assets consists of a training and

testing phase. We chose the Single Shot Detector (SSD) model

which was pre-trained on the MSCOCO dataset (Lin et al., 2014)

as a starting checkpoint for our model. SSD requires only a single

pass through the neural network during inference, thus making it

inherently faster and in turn more suitable for our use case of

integrating object detection with anchor placement (Liu et al.,

2016). In our system, we retrain the last layer of the neural

network using the training examples obtained in situ. We use

few-shot learning by training on multiple views of a few

instances of an object. The input images are down sampled to 600

× 600 pixels. The model takes in images and ground truth

bounding boxes for each object. Our SSD model has 6 neural

network layers, the last layer of which is retrained with our

training data for 30,000 steps. We fine-tune the model using

RMSProp with an initial learning rate of 4, decay factor of 0.9,

momentum of 0.9, batch size of 15 and 8000 decay steps. The

 (a) (b) (c)

(d) (e) (f)

model returns the class label with the highest predicted score for

the detected asset and the confidence level for that prediction.

4.1 Data Augmentation

To make the model more robust (Perez et al., 2017) to various

input object sizes, orientations, view angles, and room lighting

conditions (Taqi et al., 2018), each training image is randomly

sampled by one of the data augmentation options native to the

Tensorflow Object Detection API. These consist of: (a) use the

original image; (b) flip the original image horizontally; (c) flip

the original image vertically; (d) crop the original image such that

at least 0.1, 0.3, 0.5, 0.7, 0.9, or 1.0 fraction of the input bounding

box remains and that the minimum overlap with the new cropped

image under which the bounding box is kept is 0.1, 0.3, 0.5, 0.7,

0.9, or 1.0; (e) scale the original image with a scale ratio ≥ 0.5

and ≤ 2.0; (f) adjust the brightness of the original image by a

factor in the range [0, 0.2]; (g) adjust the contrast of the original

image by a contrast factor equal to original contrast times a value

in range [0.8, 1.25]; (h) rotate the original image by 90 degrees.

4.2 TensorFlowLite (TFLite)

To reduce the size and complexity of our model to operate on a

smartphone, we froze our 86 MB 30,000-step TensorFlow model

and converted our 23 MB frozen inference graph into a 22 MB

TFLite model, which is an offline model optimized for

smartphone devices requiring low latency and a small binary size

(Ushakov et al., 2018).

5. RESULTS

Table 1 shows experimental results of our proposed system for

ten object categories carried out in five rounds of experiments.

The object classes currently in our system are router, fire

sprinkler, fire alarm, fire alarm handle, EXIT sign, cardkey

reader, light switch, emergency lights, fire extinguisher, and

outlet. Table 2 shows the summary of various models used in the

five rounds of our experiments to be described below.

In the first round of our experiments, we used 218 training

examples over all ten classes collected from Cory Hall, with fire

sprinkler having the most examples at 60, and fire extinguisher

with fewest examples at 2. A total of 12 medium sized rooms

with 106 objects were tested in this round, resulting in overall

accuracy of 69%. As expected, classes with a larger number of

training examples such as sprinklers and routers achieved higher

accuracies of 86% and 100%, respectively, than classes with

fewer examples such as fire extinguisher achieving 0% accuracy.

The training examples and data augmentation do not account for

all types of appearances of a fire extinguisher, e.g. whether it is

hung by itself or placed behind a glass with writing on it. In

addition, the test size for fire extinguisher class is quite small,

making the zero percent accuracy not statistically significant.

For round two of our experiments, the training set consisted of

the original training set in round 1, plus the incorrectly classified

images in the first round which were interactively corrected by

the user, resulting in a total of 252 training examples. In this

round, we tested the system in 4 rooms visited in round 1 with 49

assets, and three new rooms with 24 assets, resulting in a total of

73 assets. As expected there is overall improvement in accuracy

from 69% in round 1 to 85% in round 2.

In round 3 of our experiments, we used the training examples for

round 2, in addition to the incorrectly classified images in round

2, which were interactively corrected by the operator, resulting in

a total of 265 examples. In this round we visited 7 new rooms in

a new building Soda Hall, not previously seen in either of the two

previous rounds. Overall accuracy is at 76%, which is an

improvement over round 1, but slight decrease compared to

round 2. This can be explained considering that the training was

carried out in Cory Hall, and testing in Soda Hall. Figure 4 shows

an example of two routers in Cory and Soda Halls, indicating a

significant difference in appearance. For classes with few

examples for training, generally speaking the number of tests is

also few since those assets are less common in buildings,

resulting in statistically insignificant accuracy measurements.

Nevertheless, as shown in Figure 5, there is a general correlation

between the number of training examples and the accuracy. For

example, the sprinkler class with 69 training examples resulted

in 91% accuracy while the fire alarm handle with 8 examples

resulted in 14% accuracy.

In round 4 we used the same model as round 3, and tested the

model on another entirely new building Evans Hall. As evidenced

in Table 1, the accuracy for Evans is 55%, which is lower than

Soda Hall. This can be partially explained by the fact that Soda

and Cory Halls are part of the electrical engineering and

computer science department, and as such might have similar

looking infrastructure devices, whereas Evans Hall houses many

different academic departments. Figure 6 shows two examples of

emergency lights in Cory and Evans Halls indicating a significant

difference in appearance between them. This discrepancy

resulted in the accuracy for the emergency lights in Evans Hall to

be zero percent.

(a) (b)

Figure 4: Router from round 3: (a) Cory Hall; (b) Soda Hall.

(a) (b)

Figure 6: Emergency lights from Round 4: (a) Evans Hall, (b)

Cory Hall.

In round 5, we returned to Cory Hall and tested the model on yet

new rooms, using training examples from round 3, all from Cory

Hall, as well as 15 misclassified images from round 3, all

collected from Soda Hall. The accuracy of the model dropped

slightly from 83% to 76% from the last time the model was tested

in Cory Hall. It can be argued that this model can generalize

better between the assets in two buildings, at the cost of slightly

lower performance on one building. An example of fire sprinklers

for round 5 and round 2 are shown in Figure 7 indicating the more

steep angles of data collection and augmentation in round 5 as

compared to round 2; this partially explains the lower accuracy

of sprinklers in round 5 as compared to round 2.

 (a) (b)

Figure 7. Fire sprinklers from Cory Hall (a) from training set; (b)

undetected and misclassified fire sprinkler from round 5.

Figure 5. Round 3 experiment classification accuracy vs.

number of training examples per class.

6. CONCLUSIONS AND FUTURE WORK

We have proposed an interactive way of documenting and

localizing assets inside a room using a smartphone equipped with

native AR capability, and capable of running machine learning

models in real time. The AR capabilities of the smartphone

remove the need for measuring and localizing assets in a room by

hand by offering a more accurate and less involved way to extract

an asset’s position. Future work involves: (a) developing online

incremental learning algorithms which learn from user feedback

real time without having to resort to batch training; (b) extending

the layout creation to more than one room, (c) improving the

accuracy of the system via additional augmentation of training

examples, and (d) adding support for more classes such as the fire

valve.

Table 1: A = Fire sprinkler, B = Fire alarm, C = outlet, D = light switch, E = router, F = EXIT sign, G = cardkey reader, H =

emergency lights, I = fire extinguisher, J = fire alarm handle.

Table 2: Detailed description of the training set used for each model.

REFERENCES

Asplund, A. and Hanna, G., 2018. Using Mobile Augmented

Reality and Reasoning Systems in Industrial Maintenance.

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S. and

MacIntyre, B., 2001. Recent advances in augmented reality.

NAVAL RESEARCH LAB WASHINGTON DC.

Azuma, R.T., 1997. A survey of augmented reality. Presence:

Teleoperators & Virtual Environments, 6(4), pp.355-385.

Boyes, G.A., Ellul, C. and Irwin, D., 2017, October. Exploring

BIM for Operational Integrated Asset Management-A

Preliminary Study Utilising Real-world Infrastructure Data. In

ISPRS Annals of the Photogrammetry, Remote Sensing and

Spatial Information Sciences (Vol. 4, No. 4W5, pp. 49-56).

Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani,

E. and Ivkovic, M., 2011. Augmented reality technologies,

systems and applications. Multimedia tools and applications,

51(1), pp.341-377.

Round 1 – All Rooms (Cory Hall), Model 0

Name A B C D E F G H I J Total

Correct 30 12 4 9 4 7 2 1 0 4 73

Wrong 5 1 16 6 0 0 2 1 2 0 33

Total 35 13 20 15 4 7 4 2 2 4 106

Accuracy % 86 92 20 60 100 100 50 50 0 100 69

training ex. 60 35 8 7 57 26 8 7 2 8 218

Round 2 – All Rooms (Cory Hall), Model 1

Correct 26 14 8 7 5 11 5 3 1 2 82

Wrong 4 0 5 1 3 0 2 0 0 0 15

Total 30 14 13 8 8 11 7 3 1 2 97

Accuracy % 86 100 62 88 63 100 71 100 100 100 85

training ex. 64 36 24 14 57 26 11 8 4 8 252

Round 3 – New Building (Soda Hall), Model 2

Correct 32 14 16 5 10 9 11 1 4 1 103

Wrong 3 3 3 5 3 0 10 2 0 3 32

Total 35 17 19 10 13 9 21 3 4 4 135

Accuracy % 91 82 84 50 77 100 52 33 100 25 76

training ex. 69 36 28 17 57 27 11 8 4 8 265

Round 4 – New Building (Evans Hall), Model 2

Correct 0 8 8 4 3 7 0 0 1 1 32

Wrong 0 0 2 2 0 2 0 14 0 6 26

Total 0 8 10 6 3 9 0 14 1 7 58

Accuracy % N/A 100 80 67 100 78 N/A 0 100 14 55

training ex. 69 36 28 17 57 27 11 8 4 8 265

Round 5 – Rooms (Cory Hall), Model 3

Correct 21 10 13 5 5 5 9 3 4 3 78

Wrong 10 1 2 1 5 0 2 1 2 0 24

Total 31 11 15 6 10 5 11 4 6 3 102

Accuracy % 68 91 87 83 50 100 82 75 67 100 76

training ex. 69 37 30 17 58 30 12 8 4 8 307

Model

Origin of Training Examples Total Number of Training

Examples Across 10 Categories

0 Cory Hall 218

1 Model 0 training images + misclassified images from Round 1 (Cory Hall) 252

2 Model 1 training images + misclassified images from Round 2 (Cory Hall) 265

3 Model 2 training images + misclassified images from Round 3 (Soda Hall) 307

Craig, A.B., 2013. Understanding augmented reality: Concepts

and applications. Newnes.

LaFlamme, C., Kingston, T. and McCuaig, R., 2006. Automated

mobile mapping for asset managers.

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P.,

Ramanan, D., Dollár, P. and Zitnick, C.L., 2014, September.

Microsoft coco: Common objects in context. In European

conference on computer vision (pp. 740-755). Springer, Cham.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y.

and Berg, A.C., 2016, October. Ssd: Single shot multibox

detector. In European conference on computer vision (pp. 21-37).

Springer, Cham.

Minoli, D., Sohraby, K. and Occhiogrosso, B., 2017. IoT

considerations, requirements, and architectures for smart

buildings—Energy optimization and next-generation building

management systems. IEEE Internet of Things Journal, 4(1),

pp.269-283.

Perez, L. and Wang, J., 2017. The effectiveness of data

augmentation in image classification using deep learning. arXiv

preprint arXiv:1712.04621.

Ruan, K. and Jeong, H., 2012, May. An augmented reality system

using Qr code as marker in android smartphone. In Engineering

and Technology (S-CET), 2012 Spring Congress on (pp. 1-3).

IEEE.

Taqi, A.M., Awad, A., Al-Azzo, F. and Milanova, M., 2018,

April. The impact of multi-optimizers and data augmentation on

TensorFlow convolutional neural network performance. In 2018

IEEE Conference on Multimedia Information Processing and

Retrieval (MIPR) (pp. 140-145). IEEE.

Ushakov, Y.A., Polezhaev, P.N., Shukhman, A.E., Ushakova,

M.V. and Nadezhda, M.V., 2018, November. Split Neural

Networks for Mobile Devices. In 2018 26th Telecommunications

Forum (TELFOR) (pp. 420-425). IEEE.

Wagner, D. and Schmalstieg, D., 2003. First steps towards

handheld augmented reality (p. 127). IEEE.

Wang, C., Ding, C., Meraz, R.F. and Holbrook, S.R., 2006.

PSoL: a positive sample only learning algorithm for finding non-

coding RNA genes. Bioinformatics, 22(21), pp.2590-2596.

Yan, Y., 2014. Registration issues in augmented reality.

University of Birmingham, 2015.

Zhang, H., Berg, A.C., Maire, M. and Malik, J., 2006. SVM-

KNN: Discriminative nearest neighbor classification for visual

category recognition. In Computer Vision and Pattern

Recognition, 2006 IEEE Computer Society Conference on (Vol.

2, pp. 2126-2136). IEEE.

Zhang, X., Genc, Y. and Navab, N., 2001. Taking AR into large

scale industrial environments: Navigation and information access

with mobile computers. In Augmented Reality, 2001.

Proceedings. IEEE and ACM International Symposium on (pp.

179-180). IEEE.

Zhang, W., Han, B. and Hui, P., 2018, October. Jaguar: Low

Latency Mobile Augmented Reality with Flexible Tracking. In

2018 ACM Multimedia Conference on Multimedia Conference

(pp. 355-363). ACM.

