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ABSTRACT  

 

Building floor plans with locations of safety, security and energy assets such as IoT sensors, thermostats, fire sprinklers, EXIT signs, 

fire alarms, smoke detectors, routers etc. are vital for climate control, emergency security, safety, and maintenance of building 

infrastructure. Existing approaches to building survey are manual, and usually involve an operator with a clipboard and pen, or a tablet 

enumerating and localizing assets in each room. In this paper, we propose an interactive method for a human operator to use an app 

on a smart phone to (a) create the 2D layout of a room, (b) detect assets of interest, and (c) localize them within the layout. We use 

deep learning methods to train a neural network to recognize assets of interest, and use human in the loop interactive methods to correct 

erroneous recognitions by the networks. These corrections are then used to improve the accuracy of the system over time as the 

inspector moves from one room to another in a given building or from one building to the next; this progressive training and testing 

mechanism makes our system useful in building inspection scenarios where a given class of assets in a building are same instantiation 

of that object category, thus reducing the problem to instance, rather than category recognition. Experiments show our proposed method 

to achieve accuracy rate of 76% for testing 102 objects across 10 classes.  

 

1. INTRODUCTION 

Building floor plans with locations of safety, security and energy 

assets such as Internet of Things (IoT) sensors, thermostats, fire 

sprinklers, EXIT signs, fire alarms, smoke detectors, routers etc. 

are vital for asset management, climate control, emergency 

security, safety, and maintenance of building infrastructure 

(Minoli et al., 2017). Existing approaches to building survey are 

manual, and usually involve an operator with a clipboard and a 

pen, or a tablet, enumerating and localizing assets in each room. 

As such, the process is tedious, time consuming, and error prone. 

Also, it does not result in any contextual data i.e. the proximity 

and relationship between the sensors, and the proximity and 

relationship between the assets and the room (Asplund et al., 

2018), (Wagner et al., 2003), (LaFlamme et al., 2006).  

 

In this paper, we propose an interactive method for a human 

operator to use an app on a smartphone to (a) create the 2D layout 

of a room, (b) detect assets of interest, and (c) localize them 

within the layout. The output is the layout of each room in a 

building with the location of each asset marked in 2D and 3D in 

the layout, and an associated picture for each asset. This “as 

built” recovery of the assets in a building can be used in Building 

Information Modeling (BIM) of buildings by architects, owners, 

construction firms and facility managers (Boyes et al., 2017). 

Furthermore, it can be integrated with Facilities Management 

(FM) software tools such as TRIRIGA from IBM or Archibus.  

 

The driving force behind our approach is the ubiquity of 

smartphones, and advances in machine learning and augmented 

reality (AR) on mobile platforms such as smartphones. Today’s 

mobile devices are equipped with powerful processors and a 

myriad of sensors such as accelerometers, gyroscopes, and high-

resolution cameras (Zhang et al., 2018). Thus, they are well 

suited for AR tracking systems and applications as well as 

running object detection models (Carmigniani, 2011), (Craig, 

2013). Furthermore, tracking is now scalable to large 

environments (Zhang, 2001).  

 

AR allows the placement of virtual objects in the real world 

(Ruan et al., 2012) by assigning anchors tied to a location in the 

real world (Azuma, 1997), (Azuma et al., 2001). By integrating 

object detection with AR, it is possible to develop a marker-less 

based system to free the user from the need to use QR codes or 

other types of markers to extract a 3D position of assets (Yan, 

2014).  

 

The outline of this paper is as follows. In Section 2, we provide 

an overview of our system. Section 3 describes the user interface 

and operation of the app, and Section 4 is on the deep learning 

methods used in our system. Section 5 includes experimental 

results, and Section 6 is conclusions and future work.   

 

 

2. SYSTEM OVERVIEW 

Our goal is to develop a smartphone based app which can be used 

for fast, and semi-automated asset detection and localization 

during building survey by inspectors and auditors. In this paper, 

we are concerned with 10 classes of assets related to safety, 

security and comfort of users, but our method can be extended to 

a much larger class of assets. In particular, our system in this 

paper is designed to recognize the following class objects: router, 

fire sprinkler, fire alarm, fire alarm handle, EXIT sign, cardkey 

reader, light switch, emergency lights, fire extinguisher, and 

outlet.  

 

To automatically detect assets, we leverage existing advances in 

deep learning. Broadly speaking, there are two general methods 

for applying machine learning methods to object detection: 

instance recognition and category recognition. Instance 

recognition refers to situations where one is interested in finding 

all instances of a particular brand and model number of a given 

asset such as “Honeywell 1231304 programmable 7-day 

thermostat” (Zhang et al., 2006). This is in contrast with category 

recognition whereby one is interested in finding all objects in the 

same category regardless of brand or model number. An example 

of category recognition in the building context would be to find 

all thermostats inside a building regardless of their brand or 



 

model number (Wang et al., 2006). Both problems require 

training neural networks with examples of the object to be 

detected. As expected, category recognition is more involved and 

requires a significantly larger number of heterogeneous training 

examples than instance recognition.  

 

For our particular application of surveying a building and 

detecting and localizing assets of interests, a number of 

considerations need to be taken into account in choosing between 

instance and category recognition. To begin with, the number of 

publicly available training examples for our desired class of 

objects is small, making category recognition less attractive. For 

example, the picture of a fire extinguisher found in the public 

image databases Google shown in Figure 1b is quite different 

from a picture of an installed fire extinguisher in an actual 

building taken under realistic lighting conditions, as shown in 

Figure 1a. As such, it is not possible to rely solely on publicly 

available image databases for training the models for our 

application. Furthermore, the assets found inside a given building 

are usually limited to few brands/models and as such are quite 

amenable to instance recognition.  Specifically, one can envision 

using instances of particular assets inside a building to construct 

an instance recognition engine, which is enhanced as the 

inspector progressively adds new examples of the same instance 

as he or she visits more rooms inside a given building or more 

buildings with similar devices in a campus. This bootstrapping 

strategy improves the recognition accuracy of the instance 

recognition model over time, and can also be used as a starting 

point of a category recognition model to be used in this or other 

applications.  

 

          

(a)                                 (b)  

 

Figure 1. An example of fire extinguisher (a) captured by the 

operator in an actual room; (b) from Google Image Database. 

 

 

3. USER EXPERIENCE  

We start with the user experience in creating the layout for each 

room, and then describe the way assets in a given room are 

tagged, located and documented.   

 

3.1 Layout Generation  

Upon launching the app, the user first creates the layout of the 

room and then localizes the assets within the room. There are 

multiple approaches to creating the layout of a room. One way is 

to point the viewfinder on the smartphone to each vertical wall to 

detect it, compute the equation of the plane for that wall, find the 

intersection of those planes to find the layout, and then project 

them into the x-z horizontal plane to create a 2D layout. To 

extend the layout to 3D, we can detect the plane associated with 

the ceiling and find its intersection with the remaining vertical 

planes. We found this method to be error prone and inaccurate. 

Rather, we opt to use a simpler approach by instructing the user 

to click on the corners of the room, in a clockwise or counter-

clockwise manner to generate the 2D layout. To extrude to 3D 

the user can also place an anchor on the ground and another one 

right above it on the ceiling to extract the approximate room 

height. In both approaches we take advantage of the positioning 

and tracking capabilities of modern smartphones via their AR 

capabilities.  

 

3.2 Asset Documentation  

The initial recognition model for a given building can either be 

generated from previously inspected buildings, or it can be made 

in situ from the assets of the building under consideration itself. 

In this paper, we take the latter approach in our experiments. As 

mentioned earlier, this initial recognition model is refined as the 

operator progresses from room to room inside a given building.  

 

Once the layout for a given room is created, the work flow of our 

system for detecting and localizing assets in that room is as 

follows: the user finds the asset through the phone viewfinder and 

taps on the smartphone screen. The application takes a screenshot 

of the viewfinder, which is run through the neural network on the 

smartphone,  detecting  and classifying  assets by assigning a 

probability to each of the N classes of objects it has been trained 

on. The most likely class, together with its associated probability 

or confidence is then displayed on the screen. The human 

operator will then either confirm or dis-validate the auto-

recognition results. In the latter case, a dropdown menu with all 

categories of assets is displayed so that the user can choose the 

correct class, localize the asset, and draw its associated bounding 

box. The final output is a 2D layout of a room superimposed with 

the location of the detected assets. 

 

Figure 2 shows an example of the above interactive process. The 

user points the viewfinder on the app to the object of interest and 

taps on the screen to capture a picture to be input to the 

recognition engine, as shown in Figures 2a and 2b for an outlet 

and a light switch respectively. The recognition engine then 

outputs the category with the highest confidence or probability 

and puts an AR anchor on that object based on the 3D position of 

that object in space. As seen, for the objects in Figures 2a and 2b 

the confidence is 0.92 and 0.87 respectively, and the detected 

category by the system is correct in both cases. Figure 2c shows 

an example of an outlet which has erroneously been detected by 

the recognition system to be a light switch. As seen, the 

confidence reported by the system is 9%. In this case, the user 

clicks on the “UNDO” button at the bottom of the screen, in 

which case a list of alternate objects in a dropdown menu shown 

in Figure 2d is presented to the user, giving a chance for the user 

to correct the error by choosing the correct category of light 

switch. Once the erroneous category is chosen, the user is given 

a chance to place the anchor in the right location on the image as 

shown in Figure 2e, and draw the corresponding bounding box 

for the object as shown in Figure 2f.  

 

Note that the location of the anchor is not only registered in the 

2D image as a feedback to the user, but also in a fixed 3D 

coordinate system for all objects, which is also registered with 

the floor plan the user generates for the room at the outset. The 

final output is a 2D or 3D layout of a room superimposed with 

the location of the detected assets, where the correctly detected 

and classified assets are displayed in green and misclassified 

assets are displayed in red, as seen in Figure 3.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Screenshots of our system showing (a) correct 

detection of an outlet with confidence level of 93%; (b) correct 

detection of a light switch with confidence level of 87%; (c) 

incorrect detection of an outlet as lighting switch with 

confidence level of 9.7%; (d) dropdown menu showing the 

incorrect detection, which the user can correct; (e) user placing 

anchor in the correct place; (f) user drawing a bounding box 

around the object to enable the system to use this image for 

future training. 

 

Regardless of whether the system detects objects correctly or 

erroneously, all positive and negative examples generated during 

the human interaction process are saved and used for future 

training of the learning algorithm. It is this bootstrapping activity 

that makes our system more valuable over time as more operators 

use it. In this way, it is somewhat similar to search engines whose 

performance improves over time as more users  

use them. Our ultimate goal is to create an algorithmic pipeline 

that requires little new training, creates few false alarms, has low 

miss rate, and high precision and accuracy.  
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Figure 3: 2D floor plan of a room with (a) all correctly 

classified assets; (b) correctly detected assets (green) and 

misclassified/incorrectly detected (red) assets. 

 

 

4. DEEP LEARNING PIPELINE 

Our approach for detecting assets consists of a training and 

testing phase. We chose the Single Shot Detector (SSD) model 

which was pre-trained on the MSCOCO dataset (Lin et al., 2014) 

as a starting checkpoint for our model. SSD requires only a single 

pass through the neural network during inference, thus making it 

inherently faster and in turn more suitable for our use case of 

integrating object detection with anchor placement (Liu et al., 

2016). In our system, we retrain the last layer of the neural 

network using the training examples obtained in situ. We use 

few-shot learning by training on multiple views of a few 

instances of an object. The input images are down sampled to 600 

× 600 pixels. The model takes in images and ground truth 

bounding boxes for each object. Our SSD model has 6 neural 

network layers, the last layer of which is retrained with our 

training data for 30,000 steps. We fine-tune the model using 

RMSProp with an initial learning rate of 4, decay factor of 0.9, 

momentum of 0.9, batch size of 15 and 8000 decay steps. The 

 (a)                                      (b)                           (c)                                              

(d)                                         (e)                                  (f)                             



 

model returns the class label with the highest predicted score for 

the detected asset and the confidence level for that prediction. 

 

4.1 Data Augmentation 

To make the model more robust (Perez et al., 2017) to various 

input object sizes, orientations, view angles, and room lighting 

conditions (Taqi et al., 2018), each training image is randomly 

sampled by one of the data augmentation options native to the 

Tensorflow Object Detection API. These consist of: (a) use the 

original image; (b) flip the original image horizontally; (c) flip 

the original image vertically; (d) crop the original image such that 

at least 0.1, 0.3, 0.5, 0.7, 0.9, or 1.0 fraction of the input bounding 

box remains and that the minimum overlap with the new cropped 

image under which the bounding box is kept is 0.1, 0.3, 0.5, 0.7, 

0.9, or 1.0; (e) scale the original image with a scale ratio ≥ 0.5 

and ≤ 2.0; (f) adjust the brightness of the original image by a 

factor in the range [0, 0.2]; (g) adjust the contrast of the original 

image by a contrast factor equal to original contrast times a value 

in range [0.8, 1.25]; (h)  rotate the original image by 90 degrees. 
 

4.2 TensorFlowLite (TFLite) 

To reduce the size and complexity of our model to operate on a 

smartphone, we froze our 86 MB 30,000-step TensorFlow model 

and converted our 23 MB frozen inference graph into a 22 MB 

TFLite model, which is an offline model optimized for 

smartphone devices requiring low latency and a small binary size 

(Ushakov et al., 2018).  

 

 

5. RESULTS 

Table 1 shows experimental results of our proposed system for 

ten object categories carried out in five rounds of experiments. 

The object classes currently in our system are router, fire 

sprinkler, fire alarm, fire alarm handle, EXIT sign, cardkey 

reader, light switch, emergency lights, fire extinguisher, and 

outlet. Table 2 shows the summary of various models used in the 

five rounds of our experiments to be described below.  

 

In the first round of our experiments, we used 218 training 

examples over all ten classes collected from Cory Hall, with fire 

sprinkler having the most examples at 60, and fire extinguisher 

with fewest examples at 2. A total of 12 medium sized rooms 

with 106 objects were tested in this round, resulting in overall 

accuracy of 69%. As expected, classes with a larger number of 

training examples such as sprinklers and routers achieved higher 

accuracies of 86% and 100%, respectively, than classes with 

fewer examples such as fire extinguisher achieving 0% accuracy. 

The training examples and data augmentation do not account for 

all types of appearances of a fire extinguisher, e.g.  whether it is 

hung by itself or placed behind a glass with writing on it. In 

addition, the test size for fire extinguisher class is quite small, 

making the zero percent accuracy not statistically significant.  

 

For round two of our experiments, the training set consisted of 

the original training set in round 1, plus the incorrectly classified 

images in the first round which were interactively corrected by 

the user, resulting in a total of 252 training examples. In this 

round, we tested the system in 4 rooms visited in round 1 with 49 

assets, and three new rooms with 24 assets, resulting in a total of 

73 assets. As expected there is overall improvement in accuracy 

from 69% in round 1 to 85% in round 2.  

 

In round 3 of our experiments, we used the training examples for 

round 2, in addition to the incorrectly classified images in round 

2, which were interactively corrected by the operator, resulting in 

a total of 265 examples. In this round we visited 7 new rooms in 

a new building Soda Hall, not previously seen in either of the two 

previous rounds. Overall accuracy is at 76%, which is an 

improvement over round 1, but slight decrease compared to 

round 2. This can be explained considering that the training was 

carried out in Cory Hall, and testing in Soda Hall.  Figure 4 shows 

an example of two routers in Cory and Soda Halls, indicating a 

significant difference in appearance. For classes with few 

examples for training, generally speaking the number of tests is 

also few since those assets are less common in buildings, 

resulting in statistically insignificant accuracy measurements. 

Nevertheless, as shown in Figure 5, there is a general correlation 

between the number of training examples and the accuracy. For 

example, the sprinkler class with 69 training examples resulted 

in 91% accuracy while the fire alarm handle with 8 examples 

resulted in 14% accuracy.  

 

In round 4 we used the same model as round 3, and tested the 

model on another entirely new building Evans Hall. As evidenced 

in Table 1, the accuracy for Evans is 55%, which is lower than 

Soda Hall. This can be partially explained by the fact that Soda 

and Cory Halls are part of the electrical engineering and 

computer science department, and as such might have similar 

looking infrastructure devices, whereas Evans Hall houses many 

different academic departments. Figure 6 shows two examples of 

emergency lights in Cory and Evans Halls indicating a significant 

difference in appearance between them. This discrepancy 

resulted in the accuracy for the emergency lights in Evans Hall to 

be zero percent.  

 

        

(a)                            (b)  

  

Figure 4: Router from round 3: (a) Cory Hall; (b) Soda Hall.  

 

  

(a)                                         (b) 

 

Figure 6: Emergency lights from Round 4: (a) Evans Hall, (b) 

Cory Hall. 

 

In round 5, we returned to Cory Hall and tested the model on yet 

new rooms, using training examples from round 3, all from Cory 



 

Hall, as well as 15 misclassified images from round 3, all 

collected from Soda Hall. The accuracy of the model dropped 

slightly from 83% to 76% from the last time the model was tested 

in Cory Hall. It can be argued that this model can generalize 

better between the assets in two buildings, at the cost of slightly 

lower performance on one building. An example of fire sprinklers 

for round 5 and round 2 are shown in Figure 7 indicating the more 

steep angles of data collection and augmentation in round 5 as 

compared to round 2; this partially explains the lower accuracy 

of sprinklers in round 5 as compared to round 2.   

 

      

                     (a)                               (b) 

                                                                        

 

Figure 7. Fire sprinklers from Cory Hall (a) from training set; (b) 

undetected and misclassified fire sprinkler from round 5.  

 

 

 
 

Figure 5. Round 3 experiment classification accuracy vs. 

number of training examples per class. 

 

 

6. CONCLUSIONS AND FUTURE WORK 

We have proposed an interactive way of documenting and 

localizing assets inside a room using a smartphone equipped with 

native AR capability, and capable of running machine learning 

models in real time.  The AR capabilities of the smartphone 

remove the need for measuring and localizing assets in a room by 

hand by offering a more accurate and less involved way to extract 

an asset’s position. Future work involves: (a) developing online 

incremental learning algorithms which learn from user feedback 

real time without having to resort to batch training; (b) extending 

the layout creation to more than one room, (c) improving the 

accuracy of the system via additional augmentation of training 

examples, and (d) adding support for more classes such as the fire 

valve.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1: A = Fire sprinkler, B = Fire alarm, C = outlet, D = light switch, E = router, F = EXIT sign, G = cardkey reader, H = 

emergency lights, I = fire extinguisher, J = fire alarm handle. 
 
 

 

Table 2: Detailed description of the training set used for each model. 
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