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Abstract

Overcomplete signal decomposition using matching pursuits has been shown to be an efficient technique
for coding motion residual images in a hybrid video coder. Unlike orthogonal decomposition, matching
pursuit uses an in-the-loop modulus quantizer which must be specified before coding begins. This compli-
cates the quantizer design, since the optimal quantizer depends on the statistics of the matching pursuit
coeflicients which in turn depend on the in-loop quantizer actually used. In this paper, we address the
modulus quantizer design issue, specifically developing frame-adaptive quantization schemes for the match-
ing pursuit video coder. Adaptive dead-zone subtraction is shown to reduce the information content of
the modulus source, and a uniform threshhold quantizer is shown to be optimal for the resulting source.
Practical 2-pass and 1-pass algorithms are developed to jointly determine the quantizer parameters and the
number of coded basis functions in order to minimize coding distortion for a given rate. The compromise
1-pass scheme performs nearly as well as the full 2-pass algorithm, but with the same complexity as a fixed
quantizer design. The adaptive schemes are shown to outperform the fixed quantizer used in earlier works,
especially at high bit rates where the gain is as high as 1.7 dB.

I. INTRODUCTION

Most video compression systems in use today are built on a hybrid structure. Motion compen-
sation is used to predict the current frame from previously reconstructed neighboring frames, and
quantized transform coding is used for the prediction error image. Most motion residual coding
work has concentrated on orthogonal transforms. Of these, the block discrete cosine transform
(DCT) is the most popular and is widely used in video coding standards, e.g. [1] [2] [3]. Although
the DCT is fast and efficient, it tends to introduce coding artifacts, especially visible block edges
at low bit rates. Other orthogonal transforms such as wavelets have also been used [4], but these
may show ringing artifacts around high contrast edges.

Recent work has demonstrated that better performance may be achieved through the use of over-
complete transforms. In an earlier work [5], we presented a motion residual coding system based
on the iterative matching pursuit algorithm [6]. The scheme uses a greedy matching technique to
decompose the residual image into atoms, which are coded basis functions from an overcomplete
Gabor dictionary. Because the dictionary is large and varied, each coded atom closely matches the

local signal to be coded. The structure of the basis set is thus not imposed on the reconstructed



image, and systematic artifacts such as block edges and ringing are reduced. The result is both a
visual and a PSNR improvement over standard DCT-based video coders [7].

A flurry of recent work has been done to improve matching pursuit video coding. Al-Shaykh
et.al. [8] increased the efficiency of the basic algorithm with a heuristic search procedure, and
also introduced an SNR-scalable version. Others have focused on improving the basis set. De
Vleeschouwer and Macq [9] achieved faster encoding through the use of a lower-cost subband
dictionary. Redmill et.al. [10] showed both increased coding speed and a slight quality improvement
by using a 2-stage filtering technique in which separably computable coefficients from one stage
are combined spatially in a second stage to produce a dictionary containing oriented nonseparable
bases.

Quantization of orthogonal transforms has the important property that the error incurred in the
quantization of one basis coeficient is orthogonal to all of the other basis functions. Introducing
quantization error for one coeficient thus has no effect on the computation of the other coeficients.
For this reason, the quantizer for orthogonal transforms need not be known in advance, and may in
fact be designed and applied based on the already-computed transform coeficients. The situation is
much different for non-orthogonal matching pursuit decomposition. Since the quantization error in
a single basis element is generally not orthogonal to the other basis functions, this quantization error
must be considered when computing the remaining coeficients. Quantization is thus performed
in-the-loop. This means that each matching pursuit coefficient or modulus is quantized as it is
found, and the resulting quantized basis function is subtracted from the remaining signal energy
before the next atom can be found. In this way, the quantization error from one matching pursuit
stage may be progressively coded in future stages. The set of atoms chosen thus depends on the
design of the quantizer. Likewise the optimal quantizer design depends on the modulus statistics
from the chosen atoms. This results in a chicken-and-egg problem which is absent in coeficient
quantizer design for orthogonal transforms.

For simplicity, previously published matching pursuit compression systems have used a quantizer
in which both the form and the stepsize are fixed in advance heuristically. Since the rate-distortion
tradeoff for the system is sensitive to both quantization and the number of coded atoms, by fixing

the quantizer a degree of freedom for rate-distortion optimization is removed.



TABLE I
ComMMON MPEG-4 TEST CONDITIONS
Seq Name Kbit/s | frame/s | size Seq Name Kbit/s | frame/s | size
1 Container 10 7.5 QCIF 8 Foreman 48 10 QCIF
2 Hall 10 7.5 QCIF 9 News 48 7.5 CIF
3 Mother 10 7.5 QCIF 10 Coast 112 15 CIF
4 Container 24 10 QCIF 11 Foreman 112 15 CIF
5 Silent 24 10 QCIF 12 News 112 15 CIF
6 Mother 24 10 QCIF 13 Mobile 1024 30 SIF
7 Coast 48 10 QCIF 14 Stefan 1024 30 SIF

In this paper, we improve the efficiency of the matching pursuit video coding algorithm presented
in [5] by applying optimal adaptive modulus quantization at the frame level. Section II reviews the
basic system and Section 111 defines the fixed quantizer used for comparison. Section IV considers
the problem of optimal scalar quantization for the system. An adaptive dead zone subtraction
method is applied to the modulus values before quantization, and a uniform threshhold quantizer
(UTQ) with an adaptive step size is shown to be optimal for quantization of the resulting source.
The problem is then reduced to finding the best combination of dead zone size DZ, quantization
step size P, and number of coded atoms N in a rate-distortion sense. A 2-pass algorithm is
defined to solve this problem and is shown to have near optimal performance. Since the 2-pass
algorithm is computationally expensive, a compromise 1-pass algorithm is developed in Section V.
This algorithm is shown to perform nearly as well as the 2-pass scheme, but with about the same
complexity as the simple fixed quantizer. A comparison of results is presented in Section VI, along

with final conclusions.

II. MATCHING PURSUIT VIDEO COMPRESSION
A. Preliminaries

Throughout this work, integer indices k& and i are used to represent the current frame and the
current atom stage, respectively. Vectors such as ¥’ are generally defined on a Hilbert space, but
may be considered for our purpose to exist in 2-D image space. For coding results, we adopt the
sequences and test conditions which were used in the development of the MPEG-4 standard. These

are summarized in Table I.

B. Matching Pursuit Theory

The Matching Pursuit algorithm of Mallat and Zhang [6] expands a signal f using an overcom-
plete dictionary of functions G. Since f will be coded over multiple atom stages, define f; to be

the remaining signal energy after ¢ atoms have been coded, with ff) = f Individual dictionary



functions 57 € G are assumed to have unit norm. Here < is an indexing parameter associated
with a particular dictionary function. Each single stage ¢ € [1...N] of the decomposition requires

choosing v to maximize the absolute value of the following inner product:
p =< fi*lab’y > (1)

Denote the index chosen at stage ¢ as ; and the associated inner product as the modulus value
pi- These two parameters define a coded basis function or atom, and the remaining signal energy

for the next stage is computed as:

fi = fi-1 — pi by, (2)
The procedure continues iteratively until some stopping criteria is reached. For example, the bit
rate available to encode f may be exhausted, or some energy threshold for the residual may be
reached. Each stage ¢ yields a dictionary index +;, a modulus p;, and a residual signal f; which is

passed on to the next stage. After N atoms are coded, the signal can be approximated by a linear

function of the dictionary elements:
f ~ Zpi g'n (3)
To use this technique in a coding system requires modulus p; to be quantized before the sub-
traction in Equation (2). Quantization must be done in the coding loop, since the residual signal

f; is used to find the remaining atoms. A description of the resulting video coding system is given

in Section II-C, and the fixed quantizer design used in previous works is reviewed in Section III.

C. System Description

The basic matching pursuit video coding system was defined in [5] and is shown in block form in
Figure 1. Figure 1a shows the hybrid encoder in which motion compensation is used to predict the
current frame from the previous reconstructed frame. The prediction image is subtracted from the
current original image to get the motion residual image. In the notation of the previous section,
the motion residual image is f: the signal to which matching pursuit coding will be applied. This
is done in the “Find Atoms” block of the figure, which decomposes f_' into N atoms which are
then coded and transmitted to the decoder. The bitstream consists mainly of the motion vectors

and atom parameters, with a small amount of header information sent per frame. The decoder,
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as shown in Figure 1b, recovers the motion vectors and atom parameters from the bitstream and
uses them to reconstruct the motion prediction image and the atom-coded residual signal. These
are then combined to produce the reconstructed image.

The basis set G consists of the separable collection of 400 2-D Gabor functions shown in Figure 1c.
An exact mathematical specification is given in [5]. An atom consists of a single basis shape from
the figure placed at some spatial location (z,y) in the coded residual image. For transmission, the
atoms are sorted into a position scanning order, and the positions are differentially coded along the
scanning path. The differential position codes and the basis shape indices are entropy coded and
transmitted without loss to the decoder. The atom modulus values p; are also transmitted; these
have been quantized in the coding loop, and the appropriate quantizer bin indices are entropy
coded and transmitted.

DCT and wavelet based systems typically use quantization based rate control schemes. The
quantizer stepsize is controlled in an attempt to match a target rate or other coding requirement.
Previously published matching pursuit systems have instead fixed the quantizer and used the
number of coded atoms N to vary the rate. Atoms are coded until a target bit rate R is exhausted
or some quality constraint is reached. Very fine-grain control is possible, with the actual bit rate
typically within 25 bits per frame of the intended target rate, or the visual quality within 0.1 dB
of a specified target PSNR.

For a matching pursuit system, modulus quantization is only one of two sources of coding distor-



Fig. 2. Simple midtread linear symmetric quantizer with fixed stepsize QP, as used in previously published
matching pursuit systems.
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tion. The other arises because only a finite number of atoms may be sent, and the approximation
in (3) only approaches equality when the number of atoms is very large. It is possible to trade
off distortion between these two sources. For example, if more bits from a limited budget are
assigned to represent the moduli, then quantization error is reduced, but the additional cost per
atom reduces the number N that may be coded at the same target bit rate. Choosing the combi-
nation that minimizes the overall coding distortion is the central theme of this paper, and will be

addressed in Section IV.

ITI. FIXED QUANTIZER DESIGN

Previously published matching pursuit video coders used a midtread linear symmetric quantizer
with midpoint reconstruction, as shown in Figure 2. For the results shown in [5], [8] the quantiza-
tion stepsize was fixed at QP = 30, a value heuristically chosen to perform well on the MPEG-4
test sequence set.

Since the focus of this paper is adaptive quantizer design, we now consider this fixed quantizer
for use as a comparison base for our later adaptive designs. The advantages and disadvantages of

this design may be summarized as follows:

Advantages:

Al. Fixed quantizer requires no knowledge or pre-analysis of the source.

A2. Provides for simple and effective rate control based on number of coded atoms N.
A38. Performs well for standard MPEG-4 test sequences and rates.

Disadvantages:

D1. Fixed quantizer removes a degree of optimization freedom. That is, for a given frame,
a different quantizer with a different number of coded atoms may produce a lower distortion
at the same target bit rate.

D2. Large fixed dead zone imposes a hard limit on attainable bit rate and image quality.

Of the two listed disadvantages, note that D1 is intrinsic to any fixed quantizer design. That is,

no fixed quantizer will be suitable for all frames at all possible bit rates. It is thus appropriate that



this disadvantage be present in our fixed quantizer comparison model. However, D2 is really a flaw
in the specific quantizer design shown in Figure 2. This flaw will be explained and characterized in
the remainder of this section. Sections ITI-A and ITI-B will then develop a modified fixed quantizer
design which eliminates this flaw while preserving the listed advantages.

To see why D2 is true, consider the matching pursuit decomposition of a single frame of the
Stefan sequence as shown in Figure 3. The sequence was coded at 30 fps at a constant bit rate of 3
Mbit/s. This particular frame reached the desired rate using 5318 atom stages. Figure 3a shows the
remaining signal energy || f;||2 after each atom iteration . Figure 3b shows the absolute modulus
values |p;| before quantization. Note that the signal energy is strictly decreasing, reflecting that
each atom results in some positive energy reduction. The modulus values generally decrease with
iteration, although not monotonically. If a given frame is coded to an arbitrarily high bit rate using
the fixed quantizer of Figure 2, at some stage i the modulus value p; will satisty |p;| < (QP/2),
and thus will fall into the dead zone of the quantizer. Since the resulting atom quantizes to zero,
the matching pursuit update equation (2) gives us f; = ﬁ_l. Because the residual energy was
unaffected by stage ¢, the “Find Atom” block shown in Figure 1 will find the exact same atom
for stage ¢+ + 1, and the algorithm will become deadlocked, unable to code additional nonzero
coeficients. This effectively imposes a hard limit on both rate and quality, and makes the specific

quantizer design of Figure 2 unusable at high bit rates. Specifically, it restricts the matching

pursuit decomposition to operate only at rates low enough such that all moduli p; satisfy:

lpil > QP/2 (4)

Our experience has shown this condition to be violated for SIF sequences such as Mobile and
Stefan when coded in the 1 to 2 Mbit/s range. It may also be violated at much lower rates for
particular frames with low residual energy, which occur during low motion periods of the sequence.
The absolute modulus values for such frames tend to be much lower than frames with higher levels
of motion.

Restriction (4) is specific to the fixed quantizer design of Figure 2. In the next section, we
develop the comparable restriction for a more general fixed quantizer design. A modified design
which may be used at higher bit rates is then developed in Section III-B. This modified design

will then be used as the comparison base for the adaptive quantizers developed in Section IV.



Fig. 3. Matching pursuit decomposition of first residual frame of the Stefan sequence. (a) Remaining signal
energy vs. iteration. (b) Absolute modulus vs. iteration.
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A. Restriction for a general fized quantizer

Consider a general quantizer Q(-), and allow the quantization error to be represented by d; =
pi —Q(p;). Suppose f; is the signal remaining after the atom for iteration ¢ has been quantized and

subtracted from the source energy. Then the Energy Reduction (ER) for stage i can be defined as:

2

-

fi

BR: 2 [fie|” -

As shown in Appendix A, the single-stage Energy Reduction can be represented as:
ERZ = piz - dig (5)

To avoid the deadlocking problem seen in the earlier fixed quantizer design, we require positive
energy reduction, specifically that ER; > 0, for each stage . For an even-symmetric quantizer
design, consider without loss of generality the p; > 0 case. By combining Equation (5) with the

definition for d;, we arrive at the following restriction in order to avoid deadlocking:

0 < Q(ps) < 2p; (6)

A graphical interpretation of this restriction is shown in Figure 4a. The figure shows the re-
maining signal energy before and after stage 7 as a function of Q(p;)/p;. The dotted line represents
|| fi—1||?, the energy before the atom is coded, and the solid line shows ||f;||?, the energy after the
atom is coded. The plot is a direct consequence of Equation (5). The maximum energy reduction
of p;% occurs in the absence of quantization error, that is when Q(p;)/p; = 1. When this ratio falls
outside the range (0, 2), the coded atom has a destructive effect in that the remaining signal energy
is increased. By designing a modified fixed quantizer to operate within this restricted range (6)

for a wide range of interesting bit rates, we can avoid the deadlocking problem seen earlier.



Fig. 4. (a) Remaining signal energy before and after the current stage as a function of Q(p;)/p;. Positive
energy reduction requires Q(p;) € [0, 2p;]. (b) Modification of the fixed quantizer design. Original dead
zone has been divided into several additional quantization bins.
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B. Modified fized quantizer design

Here we show a heuristically modified fixed quantizer design which allows high bit rate oper-
ation without changing the earlier documented low bit rate performance. Recall that the main
disadvantage D2 of the original fixed quantizer design was a large fixed dead zone which resulted
in the deadlocking problem at high rates. We modify this design by splitting the dead zone into
additional bins to be used at high bit rates when the modulus values become small. The resulting
nonlinear quantizer is shown in Figure 4b. Midpoint reconstruction is used, and even symmetry
allows us to show only the positive half. Each new bin is formed by splitting the remaining dead
zone in half. Reducing the dead zone in this way allows more non-zero atoms to be coded, and
thus enables the encoder to work at higher bit rates without deadlocking. Any number of such
bins may be added in order to achieve arbitrarily high rates. We use three added bins as shown
in the figure, reducing the dead zone to [0, QP /16]. Our experiments show that this is sufficient
to allow operation without deadlocking for the STF MPEG-4 test sequences at 3 Mbit/s, the high-
est rate tested in this paper. Note however that this strategy merely postpones the deadlocking
problem. That is, at some rate beyond 3 Mbit/s, the condition p; > QP /16 will be violated, and
deadlocking will again occur.

It is important to note that the added bins are consistent with the general quantizer restric-
tion (6), and so positive energy reduction, that is ER; > 0, is guaranteed for all moduli which fall
into these bins. At low bit rates where moduli are larger than QP/2, the quantizer is identical to
the earlier design, and so low bit rate performance is not affected. This is true for the standard
MPEG-4 sequences and rates, for which the earlier restriction (4) holds.

A remaining question is how to entropy code the new high rate bins. The simplest approach



TABLE II
VARIABLE LENGTH CODE (VLC) MAPPINGS FOR NEWVLC AND SHIFTVLC CODING SCHEMES.
NewVLC Scheme Shift VLC Scheme

Index | Recon [ Bin Type Index | shift =0 [ shift =1 | shift =2 [ shift=38
0 3-QP/32 | Added 0 QP 3-QP/8 [ 3-QP/16 | 3-QP/32
1 3-QP/16 | Added 1 2. QP QP 3-QP/8 | 3-QP/16
2 3-QP/8 Added 2 3-QP 2. QP QP 3-QP/8
3 QP Original 3 1. QP 3-QP 2- QP QP
4 2. QP Original 4 5.QP 1. QP 3- QP 2. QP
5 : : 5 : : : :

is to add a new VLC code for each new bin and retrain the system as before.

10

This method

increases the size of the modulus VLC table, and will be denoted “NewVLC”. We also present an
alternate approach from our MPEG standards work [11]. Suppose the size of the modulus VLC
table remains unchanged and instead a single shift codeword is sent at the frame level to specify
how many of the new bins were used during coding. For three added bins, shift takes a value in
{0,1,2,3}, for an overhead of 2 bits per frame. The VLC table is then interpreted so that the
first code in the table points to the lowest bin actually used in coding the current frame. The
VLC table is effectively shifted down by shift bins. This idea is based on the empirical observation
that the modulus distribution is effectively a shifted exponential distribution, and so the lowest
bin used typically has a high probability of occurrence. We defer a detailed look at the modulus
distribution until Section IV-A.

To clarify the difference between the two schemes, the VLC mappings are shown as Table II.
Note that shift = 0 at low bit rates; in this case both the quantizer and VLC structure match
those of the original fixed quantizer design shown in Figure 2. The 2-bit per frame shift codeword
is insignificant, and so low bit rate performance is equivalent to earlier published results [5], [7].

Since “NewVLC” and “ShiftVLC” are based on the same quantizer design, they differ only by
the resulting cost per atom. To compare them on this basis, the two schemes were implemented and
separately trained on a set of sequences outside the MPEG-4 test set. The QCIF sequences from the
MPEG-4 set were then run for a comparison, with the resulting cost per modulus summarized in the
top section of Table III. The first three columns show that at these rates the two schemes produce
a nearly identical cost per modulus. The remaining columns show that the ShiftVLC system uses
a slightly lower percentage of its atom budget on modulus codewords, but the difference is very
small. The two schemes are thus nearly identical at low bit rates where the additional “high-rate”

bins aren’t used. The difference is much more apparent at higher rates, as shown in the bottom
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TABLE III
AVERAGE MODULUS VLC COST AND MODULUS BITS AS A PERCENTAGE OF TOTAL ATOM BITS.
Bits/Modulus % Bits to Modulus

Sequence NewVLC ShiftVLC  Diff | NewVLC ShiftVLC  Diff
Container10 3.30 3.29 001 | 14.97 1490 007
Hall10 4.36 4.36 0.00 18.79 1878 -0.01
Mother10 3.10 3.11 0.01 12.26 12.21 -0.05
Container24 2.38 2.38 0.00 12.61 12.65 0.04
Silent24 3.62 3.63 0.01 15.73 15.71 -0.02
Mother24 2.34 2.34 -0.01 11.21 11.13 -0.07
Coast48 3.44 3.44 0.00 16.26 16.23 -0.03
Foreman48 3.25 3.25 0.00 15.38 15.32 -0.06
Mother24 2.34 2.34 001 | 121 11.13 007
Mother48 2.12 2.14 0.02 11.34 11.42 0.08
Mother72 2.93 2.29 -0.64 15.65 12.70 -2.95
Mother96 4.18 2.60 -1.58 21.37 14.62 -6.75

section of Table ITI. Here the QCIF Mother sequence is coded with bit rates from 24 to 96 kbit/s.
At the highest rates, ShiftVL.C shows a performance advantage over the simpler NewVLC system,
saving up to 1.6 bits per modulus code and using a smaller percentage of atom bits for modulus
codewords. Because of this advantage, ShiftVLC will be used for comparison to the adaptive

systems developed in the next sections.

IV. OPTIMAL ADAPTIVE (QUANTIZATION

This section considers the problem of designing an optimal adaptive modulus quantizer for the
matching pursuit video encoder. Section IV-A examines the modulus distribution and shows that
an adaptive dead zone subtraction technique can be used to reduce the energy content before
quantization. The optimal form and stepsize of the quantizer for the resulting source will be
developed in Sections IV-B and IV-C, respectively, and a practical 2-pass algorithm will be shown

to have near-optimal performance.

A. Adaptive Dead Zone Subtraction

A sample modulus distribution for the matching pursuit video coding system is shown in Figure 5.
This is a normalized histogram of the moduli for a single frame of the Stefan sequence coded to
3 Mbit/s. In-loop quantization® is used in coding, but the values before quantization are used to
produce the continuous distribution shown. The figure illustrates some properties that generally
hold for the modulus distribution. Because the distribution is symmetric about zero, the quantized

moduli may be coded as magnitude plus a sign bit with no loss of efficiency. This reduces the

1 Figure 5 uses ShiftVLC as the in-loop quantizer. This choice is arbitrary, since the distribution changes very little if a
different quantizer is used, or even no quantizer at all. This is further investigated in Figure 9.
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Fig. 5. Modulus distribution for a single frame of Stefan (SIF) coded at about 3 Mbit/s.
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number of quantizer bins and VLC codes by half, and has an added benefit for adaptive quantizer
design, since the data per bin available for run-time analysis is effectively doubled. A second
interesting property is the presence of a large dead zone. Note that the cutoff around the dead
zone is very sharp, with high probabilities near the dead zone decision border.

We now show how the modulus distribution changes from frame to frame. Figure 6a shows
absolute modulus distributions for coded frames of three different MPEG-4 test sequences. For
each sequence, five frames are coded sequentially without quantization and the resulting per-frame
modulus distributions are superimposed. Since the in-loop quantizer is omitted, exact bit rates
cannot be computed. Instead, the number of atoms per frame is matched to the corresponding
standard MPEG-4 test run. The resulting plots show a poor match between individual distribution
curves, which suggests the need for a frame adaptive quantizer design. Close examination of
the plots shows that the shape of the distribution is fairly consistent, but that this shape shifts
horizontally from frame to frame. This is seen most clearly at high bit rates such as Stefan, where
a large number of atoms per frame allows more reliable computation of the distribution curves.

Because the distribution shifts between frames, we propose a simple transformation to the orig-
inal modulus source. Define DZ; as the minimum absolute modulus value found in encoding
frame k. A “DZ-Subtraction” operation is then performed on the modulus source, that is DZ}, is
subtracted from all absolute modulus values within the frame. The distributions of the resulting
DZ-Subtracted source are more consistent from frame to frame, as illustrated in Figure 6b.

The effect is even more dramatic when modulus distributions are combined over multiple se-
quences or across multiple bit rates. Figure 7 shows the combination of multiple sequences at the
same rate. Each plot is generated by encoding all of the MPEG-4 test sequences from Table I
that correspond to the given bit rate categories (24 kbit/s, 112 kbit/s, and 1 Mbit/s). The se-

quences from each category were coded without quantization using the same conditions as in the
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Fig. 6. Absolute modulus distributions for single matching pursuit residual frames coded sequentially
without quantization. (a) Sequences coded without DZ-subtraction. (b) Same sequences with framewise
DZ-subtraction. Note the number of atoms per frame match the standard MPEG-4 sequence runs of
Mother at 24 kbit/s, News at 112 kbit/s, and Stefan at 1 Mbit/s.
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previous figure. Modulus data was then taken from enough frames to produce about 3000 atoms
per bit rate category. For example, the leftmost plots combine the 24 kbit/s QCIF encodings of
Container, Silent and Mother with 10 frames used per sequence. Each trace in Figure 7(a) shows
the modulus distribution combined across the frames of a single sequence. Note that the dotted
lines, which represent the distributions without DZ-subtraction, match poorly across sequences.
A much better match is seen in the solid lines, which show the distributions after DZ-subtraction.
Figure 7(b) shows the combined distributions for each bit rate category. In each of these plots,
a sharp, exponential-like distribution is produced by the DZ-subtraction method as shown by the
solid line. This shape is well-matched to the single-frame distributions of Figure 6b, and is even
consistent across bit rates. The distributions without DZ-subtraction are much less consistent,
because the modulus source varies greatly across frames, sequences, and bit rates.

Figure 8 shows the effect of combining distributions across bit rate categories. To generate the
figure, all of the standard MPEG-4 test sequences were coded in the same manner as used in the
previous two figures, and enough frames were taken from each of the five bit rate categories (10,
24, 48, 112, and 1024 Kbit/s) to produce about 3000 atoms from each category. This was done
to prevent the higher bit rate sequences, having more coded atoms per frame, from dominating
over the lower bit rate data. Figure 8a shows a simple combination of the absolute moduli, while
Figure 8b shows the DZ-subtracted result. Without the DZ-subtraction, the combined distribution

is somewhat random and matches neither the individual frame distributions from Figure 6a nor
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Fig. 7. Combined modulus distributions for each of three MPEG-4 test rate categories. (a) Separate
distribution curves for each sequence in the given bit rate category. Solid lines show runs with DZ-
subtraction. Dotted lines show runs without DZ-subtraction. (b) Combined distribution curve for all
sequences in the given rate category.
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the combined distributions for the various rate categories shown in Figure 7. With DZ-subtraction,
the final combined distribution is again a sharp exponential, which well matches the corresponding
DZ-subtracted distributions in Figures 6b and 7. To verify the exponential form of the distribution,
a least squares best fit exponential curve is also shown in Figure 8b.

We compare the information content of the two distributions of Figure 8 by computing the
Shannon differential entropy, h(X), for each distribution.? Simple numerical integration [13] gives
a value h(X) = 6.914 for the combined distribution in Figure 8a, and a value h(X) = 5.682 for the
DZ-subtracted distribution in Figure 8b. Suppose the modulus source is to be quantized using the
optimal entropy constrained scalar quantizer as defined in [14]. Dead-zone subtraction will then
improve the rate-distortion performance r(d) of the quantizer by the difference of 1.279 bits per
symbol, a savings of about 18 percent. The dead zone parameter DZ; must be transmitted once
per frame, but this is a negligible cost even at low bit rates.

The above experiments were done in the absence of quantization. We now show that the ad-

dition of in-loop quantization does not significantly change the observed distribution. Figure 9

shows single-frame modulus distributions for two sample frames coded with and without in-loop

2 Shannon differential entropy reflects the information content of a continuous source, similar to entropy for discrete valued
sources [12]. It is defined in terms of the probability density function p;(z) as:

h(X) = / pa(2) logs o (2)da
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Fig. 8. Modulus distributions combined across all MPEG-4 sequences and rates. Enough coded frames
were taken to provide approximately 3000 atoms from each of the five bit rate categories (10, 24, 48,
112, and 1024 Kbit/s). (a) Without dead-zone subtraction. (b) With frame-wise dead zone subtraction.
Dotted line shows best exponential fit.
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Fig. 9. The effect of in-loop quantization on the absolute modulus distribution for single coded frames. (a)
Mother QCIF at 72 kbit/s. (b) Stefan SIF at 3 Mbit/s. Three different quantizers with progressively
larger stepsize to deadzone ratios are used for each frame.
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quantization. The top row of plots, (a), shows a frame from Mother QCIF at 24 kbit/s, while the

bottom row, (b), shows a frame of Stefan SIF at 3 Mbit/s. For each plot, the solid line depicts
matching pursuit without quantization, and the dotted line shows in-loop quantization. Clearly
the amount of error introduced by the quantizer will determine the amount of change seen in the
resulting distribution. For this reason, three quantizers are used with varying stepsizes. The quan-
tizer is uniform with an expanded dead zone, which is equivalent to DZ-subtraction followed by a
uniform threshhold quantizer (UTQ). The dead zone size DZ is set to be the minimum absolute
modulus value seen in the non-quantized encoding. The step size QP is then set so that the ratio
QP/DZ takes on values of 0.4, 1.0 and 1.6. Note that this stepsize to dead-zone ratio provides a
convenient description of the quantizer, and so will be used in the remainder of this paper.
Scanning the plots of Figure 9 from left to right, it is clear that for ratio values of 1.0 and
below, in-loop quantization produces no noticeable change to the absolute modulus distribution.

For more coarse quantization with QP/DZ = 1.6, some change is visible, but the distributions
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Fig. 10. (a) Abstraction of the encoder, showing relation between overall rate and distortion (R,D) and
that of the internal modulus quantizer (r,d). (b) Definition of quantizer ()(-), which combines DZ-
subtraction and quantization.

Original
Image Matching Pursuit | R p | Bitstream — —
® e O) i =11 gy | QO] aga || @)
T | —
Previous | Pi ] Q(_)‘»['Ei QP | current
Reconst. Reconst

with and without quantization are still nearly identical. We can assume that within this range of
ratio values, in-loop quantization has little effect on the modulus distribution or the effective dead
zone size. Under this assumption, the skeleton of a 2-pass adaptive quantization algorithm can
be seen. A first pass pre-codes the residual signal without quantization to estimate the number
of atoms and the size of the dead zone DZ;. The second pass uses dead-zone subtraction with
in-loop quantization of the resulting moduli. The details of this algorithm, along with a solution

for the optimal quantizer form and stepsize, will be developed in the next two sections.

B. Optimal Quantizer for the Matching Pursuit System

In this section, we develop the optimal form of the quantizer to use in conjunction with the
DZ-subtraction process. To clarify the problem, we first introduce some notation. Consider the
abstracted view of the encoder shown in Figure 10a. The large box represents the entire system,
which takes the current original and previous reconstructed images as input, performs both motion
compensation and matching pursuit based residual coding, and outputs the coded bitstream and
the current reconstruction to be used in encoding the next stage. Overall distortion D is defined
as the mean square error in the coded image. Overall rate R is the number of bits used to code the
current frame, which is the sum of rates to header Ryg., motion vectors Ry,.t, and atoms Rgm,.
The atom budget may be further divided into bits used for position coding Rp, basis indices Ry,

and quantized modulus Rg. In summary,

R = thr + Rmot + Ratm (7)

= Rpar + Rmot + (Rp + Rr + RQ) (8)

The modulus quantizer for the system is Q(-), shown as the smaller block in Figure 10a. The

quantization process also has an associated rate and distortion. Quantizer rate r is defined as the
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average number of bits spent to encode each modulus value, and quantizer distortion is:

d = mean((p; — Q(pi))*) = mean(d;)

Consider a 2-pass encoding algorithm in which a first pass without quantization provides an
estimate of the dead-zone parameter DZj. The second pass then uses in-loop quantizer Q(-),
which is defined to perform DZ-subtraction, apply some quantizer Q(-) to the resulting moduli,
and then add DZ}, to the result to obtain the quantized value. This is illustrated in block form as
Figure 10b. A magnitude VLC code and separate sign-bit are transmitted for each modulus. The
floating point representation of DZ is sent in the frame header to allow quantizer tracking at the
decoder.

The specific problem is to design quantizer Q(-) such that the overall distortion D for the
matching pursuit encoder is minimized at a given overall rate R. Essentially the design of Q(-)
allows a tradeoff between modulus precision and number of coded atoms. A quantizer may code
modulus values more precisely at the cost of increasing Rg, however this decreases the total number
of atoms which may be coded at an overall target rate R. We thus seek an optimal balance between
quantizer precision and number of coded atoms in order to minimize distortion for a given rate.

In the previous section, we showed that the DZ-subtracted modulus source to which Q(-) is
to be applied has an exponential distribution. The optimal entropy constrained scalar quantizer
(ECSQ) for this distribution is a UTQ [12], [15]. That is to say, using a UTQ for Q(-) will provide
the best rate-distortion performance for the DZ-subtracted moduli, and will in turn minimize d
for any given quantizer rate r. Through the use of some simplifying assumptions, we will show in
the remainder of this section that the UTQ is optimal in terms of overall (R, D) for the matching
pursuit system. We begin by presenting a pair of assumptions to relate (r,d) for the quantizer
to (R, D) for the overall system. These are presented without proof, but empirical evidence is
provided to show that each holds for the matching pursuit video system.

Assumption 1: For a given number of atoms N, Rg may vary as the quantizer changes. The
other bit rate terms and their sum R— Rg = (Rh4r + Rymot + Rp + Rp) will remain roughly constant
with changes in the quantizer.

The first part of the assumption is obvious, since Ry = Nr, and r is certainly affected by changes

in the design of Q(-). As for the other bit rate terms, Rpg4, and Ry, are determined before atom
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Fig. 11. Bit rates used to code a set number of atoms as quantizer stepsize QP changes. Total rate Ry,
changes with QP, while the rate excluding quantization Ry, — Rg stays approximately constant.
Sample coded frames are from: (a) Container QCIF coded to 110 atoms, (b) Foreman CIF coded to
735 atoms, and (c) Stefan SIF coded to 1419 atoms.
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coding begins and thus are unaffected by the quantizer design. Rp depends on the spatial density
of atoms, and thus should be approximately constant for a constant N. R; depends on the set
of basis shapes coded during the matching pursuit process. While this set does depend on the
in-loop quantizer design, we expect the average basis index codeword length (and thus R;) to be
approximately constant if IV is sufficiently large.

We are mainly interested in the last part of the assumption, that R — Rq is roughly constant
with changes in the quantizer. Empirical evidence is provided in Figure 11. Three different sample
frames with a wide range of coding complexities and effective bit rates are shown. Each frame is
coded to a constant number of atoms using the 2-pass DZ-subtracted quantizer described earlier.
For Q(-), we use a UTQ with a variable stepsize QP. The total bit rate to atoms Ry, and the
rate without quantization R, — R¢ are plotted against stepsize QP. The plots show an increase
in the total rate Ry, for the finer stepsizes, but the rate with Rg subtracted is roughly constant
as the quantizer changes. This implies that the change in rate with QP is entirely within the Rg
term, and that the sum of the remaining terms Rp + R; is approximately constant. This matches
the expectations developed in the preceding paragraph, and is consistent with Assumption 1.

Assumption 2: Suppose a frame is coded using an initial quantizer Q(-) to produce N atoms,
and that the rate and distortion are (r,d) for the resulting modulus quantizer and (R, D) for the
overall system. A second quantizer Q’'(-) produces rate and distortion pairs (r',d’) and (R', D') for
the same number of atoms N. If d' < d, then D' < D.

Although this assumption seems reasonable, it is not strictly true, particularly when the change
|d— d'| is small. However, for larger changes in distortion the assumption does approximately hold
for our system, as demonstrated in Figure 12. Sample frames are coded each to a constant number

of atoms N as the UTQ stepsize is varied. The same sample frames and stepsize values are used as
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Fig. 12. Overall image distortion D plotted against mean square distortion of the modulus quantizer d for
various quantization stepsizes. Conditions shown are: (a) Container QCIF coded to 110 atoms, (b)
Foreman CIF coded to 735 atoms, and (c) Stefan SIF coded to 1419 atoms.
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in Figure 11. Each stepsize value produces a mean quantizer distortion d and an overall distortion
D which are plotted on the horizontal and vertical axes, respectively. Since each plot is strictly
increasing, the assumption is shown to hold.

We are now ready to show that the optimal ECSQ for the DZ-subtracted modulus distribution
is also optimal in terms of (R, D) for the overall system.

Claim 1: For a given frame, define the optimal scalar quantizer for the DZ-subtracted modulus
source as the quantizer which minimizes overall distortion D for the given rate R. If Q,p:(") is the
optimal quantizer, then it must take the form of the optimal ECSQ for the DZ-subtracted modulus

distribution produced by the encoder. That is, for a given rate 7, Qopt(+) should minimize d.

Proof: See Appendix B.
We conclude that Qopt(-) should be the optimal ECSQ for the DZ-subtracted modulus source,
and thus takes the form of a UTQ. However, the stepsize QP must still be optimized for the given

frame and target rate. This is the topic of the next section.

C. Optimal Stepsize

In the previous section, the optimal quantizer Qup(+) for application to the DZ-subtracted
modulus source was shown to be a UTQ. Although the form of the quantizer is known, the step
size has not been determined, and a given target rate may be achieved through many combinations
of quantizer step size and number of coded atoms. We now look at the problem of choosing the
optimal combination of QP and N which minimize distortion D for a given target rate R.

Figure 13 shows the proposed 2-pass quantization algorithm in greater detail. At the start
of matching pursuit residual coding, motion compensation has been performed and so Rpg4- and
R0t are known. The first pass decomposes residual frame f_' using matching pursuit without

quantization. The goal of this pass is to determine the number of atoms Nj needed to hit the
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Fig. 13. Basic 2-pass adaptive quantization algorithm for the matching pursuit system.

For each frame k:

e Compute header budget (Rpq)-

e Perform motion estimation; Compute motion budget (Rmot)-

e Create motion residual frame f

e Pass 1: Decompose fwithout quantization to determine the
Nj, needed to hit target rate R and resulting dead
zone parameter DZy .

e Pass 2: Decompose fto N atoms using in-loop quantization.
The quantizer is defined by (DZj, QP).

e Transmit Pass 2 atoms (Ratm)-

e Increment k; repeat.

target rate R and also approximate the dead zone parameter DZ, for use in the second quantized
pass. To determine the stopping point, a progressive estimate of Ry, is needed, since the exact
value cannot be computed in the absence of quantization. The estimated value Ratm(i) is computed
in the following way. After each stage, the ¢ atoms found so far are quantized as a post-operation
and coded in order to estimate the rate. The quantizer for rate estimation is based on DZ-
subtraction using the minimum |p;| found so far as the value for DZ. This is followed by uniform
quantizer Q(-) with stepsize QP. For the moment, consider QP to be arbitrarily set by the user.

Pass 1 then continues until the following stopping criteria is reached:
Rpar + Rinot + Ratm(i) >R (9)

When condition 9 is satisfied, Pass 1 stops and the number of atoms N, and minimum absolute
modulus DZ;, are preserved for use in Pass 2.

The step size QP}, is the only degree of optimization freedom in the 2-pass algorithm described
above. It is thus possible, although costly, to find the optimal P, using an exhaustive linear
search. This is done for a few sample frames in Figure 14. For each coded frame, the overall
distortion D for the 2-pass algorithm is plotted against step size QP. A distinct minimum is found
in each case, however the optimal step size varies greatly with sequence and bit rate.

We have found experimentally that a much more consistent value is the ratio between the optimal
step size P, and the associated dead zone value DZj. This is demonstrated in Figure 15. In
this figure, the same three sample frames are coded multiple times with the 2-pass algorithm, each
coding reflecting a different quantizer ratio QP/DZ. Note that the optimal ratio is much more
consistent than the optimal step size, falling near 0.6 for each of the three sample frames. This

suggests that we choose QP in our 2-pass algorithm so that the quantizer ratio is near this optimal
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Fig. 14. Search for best quantizer step QP for single coded frames. Overall image distortion D is plotted
against quantization step QP for the 2-pass algorithm. (a) Container QCIF coded to 24 kbit/s, (b)
Foreman CIF coded to 336 kbit/s, and (c) Stefan SIF coded to 1 Mbit/s.
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Fig. 15. Search for best ratio QP /DZ for single coded frames. Overall image distortion D is plotted against

quantizer ratio for the 2-pass algorithm. (a) Container QCIF coded to 24 kbit/s, (b) Foreman CIF
coded to 336 kbit/s, and (c) Stefan SIF coded to 1 Mbit/s.
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value. To maintain a constant ratio QP,/DZ}, in the 2-pass algorithm of Figure 13, we modify
the rate estimation quantizer used to compute Ratm(i) during Pass 1. As before, DZ is computed
as the minimum |p;| found for the i atoms found so far. QP is then calculated to maintain the
desired quantizer ratio. When stopping criteria (9) is reached, current values Ny, DZ and QP
are passed on for use in the second quantized pass.

One convenient property seen in Figure 15 is that the curves are relatively flat in the vicinity of
the optimal ratio. This suggests that the overall distortion D is not sensitive to small deviations
from the optimal ratio, and so choosing a quantizer ratio near the optimal value will be sufficient.
To see why the curves are flat near the optimal ratio, consider the effects on distortion due to
changing the quantizer ratio. If the ratio is increased, then QP is increased for a constant DZ.
This has two opposing effects on distortion. First, a larger QP increases the quantization error and
tends to increase distortion D. However, the reduced bit cost to quantization allows more atoms
to be coded which tends to reduce D. The optimal ratio occurs at the point when these opposing
effects are equal and opposite, and hence the derivative of D with respect to ratio QP /DZ is zero.
It is not hard to imagine a range of ratios around the optimal in which the opposing effects are
nearly equal. This would explain the flat portions of the curves seen in Figure 15.

Table IV shows the result of the optimal ratio search procedure for a wider range of sample
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TABLE IV
SEARCH FOR BEST RATIO QP/DZ FOR SINGLE CODED FRAMES. SAMPLE FRAMES CODED AT ONE AND
THREE TIMES THE STANDARD MPEG TEST BIT RATE. OPTIMAL RATIO VALUE AND RESULTING PSNR
ARE SHOWN FOR EACH OF 32 TEST POINTS.

Base Rate 3x Base Rate

Sequence DZ QP Ratio PSNR DZ QP Ratio PSNR
Cont10 54.32 27.16 0.5 31.33 23.15 11.58 0.5 35.96
Hall10 54.96 21.99 0.4 31.85 23.75 9.50 0.4 36.29
Mother10 43.92 13.18 0.3 34.19 18.89 9.44 0.5 38.34
Cont24 30.12 15.06 0.5 34.87 14.15 8.49 0.6 38.89
Silent24 39.10 15.64 0.4 32.60 17.84 7.14 0.4 36.90
Mother24 25.95 7.78 0.3 37.18 10.85 6.51 0.6 41.79
Coast48 40.97 20.49 0.5 31.36 19.58 11.75 0.6 35.44
Foreman48 45.05 27.03 0.6 32.92 14.89 11.91 0.8 38.93
News48 67.63 40.58 0.6 32.46 24.04 12.02 0.5 37.67

Coast112 97.84  29.35 0.3 27.60 | 40.22 24.13 0.6 32.21
Foremanl112 | 106.95 53.47 0.5 30.09 | 24.08 14.45 0.6 36.97

Newsl112 40.09 28.06 0.7 35.47 | 14.75 10.33 0.7 40.65
Mobile1024 51.27  30.76 0.6 28.00 | 20.66 18.59 0.9 33.87
Stefan1024 38.52 23.11 0.6 31.85 13.36  13.36 1.0 38.54
FunFair1024 | 46.78 37.42 0.8 30.54 16.78 16.78 1.0 36.45
Tunnel1024 34.09 17.05 0.5 31.58 13.24 9.27 0.7 37.35

frames and bit rates. A sample frame from each of the standard MPEG-4 test sequences is coded
at the usual test rate and three times that rate. Two additional high bit rate sequences, FunFair
and Tunnel, are also coded. The two pass algorithm using a linear search for best ratio QP/DZy
is again performed, and the results summarized in the table. Note that the optimal ratio ranges
from 0.3 to 1.0, with an average of 0.57 over all 32 tested frames. By our earlier logic, the shape
of the curves in Figure 15 suggests that choosing the ratio to be near the optimal value should
produce only small losses in distortion. This is verified for the test set in Table V, which shows
the PSNR loss due to using constant ratio values of 0.6 or 1.0 instead of the optimal ratio found
by linear search. For a constant ratio value of 0.6, the loss is extremely small, less than .02 dB
difference for all sequences coded up to 1 Mbit/s. For the 3 Mbit/s sequences, the loss is a bit
higher, with values in the .05 dB to .13 dB range. For such high coded bit rates, a constant ratio
value of 1.0 is a better choice, as shown in the last column of the table.

We thus conclude that an adaptive 2-pass algorithm using dead zone subtraction and a constant
value of step size to dead zone ratio achieves nearly optimal performance for the matching pursuit
video coding system. For our experiments, a ratio value of 0.6 will be used for all rates up to
1 Mbit/s and a value of 1.0 will be used for higher rates. Note that our quantizer uses simple
midpoint reconstruction. Experiments suggest that the more optimal centroid reconstruction [12]

provides little or no gain [16].
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TABLE V
PERFORMANCE LOSS FOR SAME 32 SAMPLE FRAMES USING CONSTANT RATIO VALUES OF 0.6 AND 1.0.
PSNR DIFFERENCES ARE RELATIVE TO THE BEST RATIO FOUND USING LINEAR SEARCH.

Base Rate 3x Base Rate
Best Ratio=0.6 Ratio=1.0 Best Ratio=0.6 Ratio=1.0
Sequence Ratio PSNR Diff PSNR Diff | Ratio PSNR Diff PSNR Diff
Container10 0.5 0.0042 0.0448 0.5 0.0097 0.0486
Halll0 0.4 0.0152 0.0776 0.4 0.0145 0.0971
Mother10 0.3 0.0197 0.0853 0.5 0.0115 0.0793
Container24 0.5 0.0071 0.0576 0.6 0.0 0.0572
Silent24 0.4 0.0139 0.0842 0.4 0.0153 0.1265
Mother24 0.3 0.0023 0.0723 0.6 0.0 0.0547
Coast48 0.5 0.0141 0.0727 0.6 0.0 0.0641
Foreman48 0.6 0.0 0.0616 0.8 0.0201 0.0288
News48 0.6 0.0 0.0642 0.5 0.0097 0.0704
Coast112 0.3 0.0099 0.0638 0.6 0.0 0.0662
Foreman112 0.5 0.0061 0.0456 0.6 0.0 0.0373
News112 0.7 0.0006 0.0262 0.7 0.0085 0.0714
Mobile1024 0.6 0.0 0.0634 0.9 0.0573 0.0239
Stefan1024 0.6 0.0 0.0736 1.0 0.1287 0.0
FunFair1024 0.8 0.0073 0.0273 1.0 0.0711 0.0
Tunnell1024 0.5 0.0069 0.0866 0.7 0.0124 0.0575

V. SINGLE-PASS ADAPTIVE SOLUTION

The main disadvantage of the two-pass algorithm is the computational cost of the first pass.
This initial pass performs a pre-analysis of the residual image in order to determine DZ and QP
to achieve near-optimal quantizer performance. This doubles the complexity of the encoder, and
so a less expensive estimate of these parameters is highly desirable. In this section, we present a
method for predicting DZ for the current frame from known previous frame values. Prediction of
DZ is sufficient, since QP follows from the constant quantizer ratio.

Counsider the 2-pass algorithm and suppose that the encoded modulus values for frame k are
{P(k,i),i = 1...N} from the first pass and {p(),7 = 1...N} from the second pass. Recall that dead

zone parameter D7, is normally determined from Pass 1 results as:

DZy, = min{|p,iy|} (10)

To eliminate the analysis pass, we make two observations. First, quantization has little effect

on the modulus distribution, as demonstrated earlier in Figure 9. This allows us to approximate:

min{ [P |} = min [P, |} (11)

If we also assume that the dead zone parameter changes slowly from frame to frame, then we have
the approximation:

DZy ~ DZy_; (12)
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By combining these with Equation (10), we may approximate DZ as:

DZy ~ min{|p(x—1,)|} (13)

The dead zone parameter for the current frame is thus defined by the Pass 2 decomposition of the
previous frame, and so the analysis pass is eliminated altogether.

This scheme works to some extent, however it is not always true that DZ changes slowly from
frame to frame. To compensate for this, we may consider the initial energy £ = || ﬁ)\|2 of the
current frame. If the residual for frame k has a higher initial energy FEj, all else equal, we would
expect the distribution of {|p;|,7 = 1...N} for the frame to shift to the right and effectively increase
the dead zone size. Figure 16a confirms this relationship for the Mother sequence coded using the
2-pass algorithm at 24 kbit/s. Each coded frame is represented by a circle, with the ratio of current
to previous frame dead zone values on the horizontal axis and the corresponding ratio of initial
frame energies on the vertical. A correlation between the two ratios can be seen, and the dotted

line y = x suggests the following energy-corrected prediction for the current frame dead zone:

E
DZy=DZy_; - (Ek:k1> (14)

The effectiveness of these prediction methods is evaluated in Figure 16b. Data is from the 2-
pass encoding of Mother at 24 kbit/s, and the value of DZ is predicted with energy correction
according to Equation (14) and without correction as in Equation (13). The energy corrected
prediction is seen to be better on average, however it is not guaranteed to be better for individual
frames. If we compute mean square prediction error in DZ, then energy correction reduces the
error from 15.03 to 5.45.

The improved DZ prediction method is thus used to define a one-pass adaptive quantization
algorithm. This algorithm is similar to the two-pass algorithm of Figure 13, except Pass 1 is
omitted and the dead zone parameter is predicted according to Equation (14). If there is no
previous coded frame, the dead zone parameter is arbitrarily set to a reasonable value DZ = 15.
The resulting 1-pass algorithm is summarized in Figure 17.

There is one potential problem of combining DZ-subtraction with a 1-pass algorithm. Without
the benefit of a pre-analysis pass, the predicted DZ; may be large enough to allow the single

encoder pass to produce atoms which violate the condition |p;| > DZy. When this occurs, we
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Fig. 16. (a) Justification of the energy correction for DZ prediction. Horizontal axis shows ratio of current
to previous frame DZ values as found by the full 2-pass adaptive algorithm. Vertical axis shows ratio
of current to previous frame residual energy before atom coding. (b) Absolute error in predicting DZ
for each frame of Mother at 24 kbit/s. Dotted line shows error for simple prediction. Solid line shows
reduced error when energy corrected prediction is used.
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Fig. 17. The 1-pass adaptive quantization algorithm for the matching pursuit system.

For each frame k:
e Compute header budget (Rpgy)-
e Perform motion estimation; Compute motion budget (Rmot)-
e Create motion residual frame f
> If (previous frame data exists)
Set DZ} according to Equation (14).
> Else
Set DZp =15.
e Set QP according to DZj and desired ratio.
e Decompose fusing in-loop quantization.
Quantizer is defined by (DZj, QPy).
Dead zone is divided into high-rate (ShiftVLC) bims.
Code until progressive rate estimate equals target rate.
e Transmit resulting atoms (Ratm)-
e Increment k; repeat.

revert back to the dead zone splitting technique used for the modified fixed quantizer of Figure 4b.
That is, Shift VLC-like bins are thus added to allow such small moduli to be coded. Note that
these were not necessary for the full 2-pass algorithm, since the approximation in (11) holds very
well in practice.

The resulting 1-pass system can thus be thought of as a combination of the fixed ShiftVLC and
adaptive 2-pass algorithms. The advantages of each algorithm are retained, as will be observed in

the next section.

VI. COMPARISON OF RESULTS

This section compares the three quantization schemes presented in the previous sections on the
basis of PSNR performance and complexity. The schemes are summarized as:
Shift VLC: Fixed quantization using midtread linear quantizer with QP = 30 and three added

high-rate quantization bins.
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TABLE VI
AVERAGE LUMINANCE PSNR FOR THE STANDARD MPEG-4 SEQUENCES AND RATES.

Shift Two One 2Pass- 2Pass- 1Pass-

Sequence VLC Pass Pass 1Pass ShiftVLC | ShiftVLC
Container1l0 | 31.27 31.50 31.41 0.09 0.23 0.14
Hall1l0 32.12 3223  32.29 | -0.07 0.11 0.18
Mother10 33.28 33.52 33.47 | 0.05 0.23 0.19
Container24 | 34.39 34.55 34.46 | 0.08 0.16 0.08
Silent24 32,27 32.36  32.35 | 0.01 0.09 0.08
Mother24 36.54 36.69 36.63 | 0.05 0.14 0.09
Coast48 30.04 30.21 30.16 | 0.05 0.17 0.12
Foreman48 | 31.88 32.18 32.10 | 0.08 0.29 0.21
News48 33.02 3325 33.20 | 0.05 0.23 0.18
Coast112 26.42 26.60 26.58 | 0.02 0.18 0.16
Foremanl12 | 30.94 31.12 31.07 | 0.05 0.18 0.12
News112 36.06 36.15 36.12 | 0.03 0.09 0.06
Mobile1024 | 27.00 27.37 27.26 | 0.11 0.37 0.26
Stefan1024 | 32.04 32.25 32.15 | 0.10 0.22 0.12

2-Pass: Two-pass adaptive quantization. The first analysis pass sets the DZ and QP for the
second quantized pass.

1-Pass: Single-pass adaptive quantization. Similar to 2-Pass, but analysis pass is omitted and DZ
and QP are predicted from known values in the previous frame. Three high-rate quantization bins
are added for safety, similar to the ShiftVLC case.

All three encoders were implemented and trained on a set of sequences outside the standard
MPEG-4 test set. Coding was done on luminance only at a constant bit rate. Each ten-second
sequence has a single leading intra frame, which was encoded using DCT followed by an in-the-loop
deblocking filter. All other frames were encoded using motion compensated matching pursuit with
one of the associated quantization schemes.

The PSNR results are summarized in Tables VI and VII. Table VI shows average PSNR re-
sults for standard MPEG-4 test sequences and rates. The rightmost three columns are the most
interesting, since they show the PSNR differences between the three schemes. The first of these
columns shows that the 1-Pass algorithm comes very close in performance to the 2-Pass algorithm,
almost always within 0.1 dB. The second and third difference columns show the improvement of
the adaptive algorithms over the fixed quantizer. These differences are also shown graphically in
Figure 18. A consistent improvement over ShiftVLC is seen across all tested sequences. For the
2-Pass case, the improvement ranges from 0.09 to 0.37 dB with an average value of .19 dB. The
1-Pass algorithm also shows consistent improvement over ShiftVL.C, with an average gain of .14

dB.
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Fig. 18. Average Y-PSNR gains over Shift VLC for the 1-Pass and 2-Pass algorithms. See Table I for
sequence indices.
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Fig. 19. Average Y-PSNR gains over Shift VLC for five sequences at various bit rates.
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We expect the 2-Pass result to outperform the 1-Pass scheme, however such performance cannot
be guaranteed. This is illustrated by the Table VI result for Hall at 10 kbit/s, where 1-Pass is 0.07
dB better than 2-Pass. This result can be explained by recalling that the 2-Pass scheme maintains
a constant QP to DZ ratio, and thus chooses a stepsize that is only approximately optimal. It is
thus possible for the 1-Pass scheme to do better, however this is seen to be the exception rather
than the rule.

Performance at higher bit rates is shown in Table VII. Results are shown for five of the MPEG-4
test sequences chosen to represent a range of encoding conditions. For each sequence, the standard
MPEG-4 test rate is used as a base, and several multiples of this rate are also encoded. Again it
is useful to focus on the rightmost three columns which describe the PSNR differences. The first
of these columns shows that 1-Pass performance is again close to that of the full 2-Pass algorithm,
typically less than 0.10 dB. The second and third difference columns effectively show how the
improvement over ShiftVLC due to the adaptive schemes varies with increasing bit rate. These
differences are also shown graphically in Figure 19. It is seen that the adaptive schemes perform
much better than the fixed quantizer at higher bit rates, and that for three of the five sequences the
improvements fall in the 1 to 2 dB range for the highest tested bit rates. The largest improvements
are 1.68 dB for the QCIF Foreman sequence coded at 192 kbit/s, and 1.40 dB for the SIF Stefan
sequence at 3 Mbit/s. For these high rates, the visual improvement is mainly seen as a reduction

of ringing around sharp edges.



TABLE VII

AVERAGE LUMINANCE PSNR FOR ASCENDING BIT RATES.
Shift Two One 2Pass- 2Pass- 1Pass-

Sequence VLC Pass Pass 1Pass | ShiftVLC | ShiftVLC
Container10 31.27  31.51 31.41 0.09 0.23 0.14
Container20 | 34.19 34.36 34.26 0.11 0.18 0.07
Container30 | 35.91 35.94 35.89 0.05 0.04 -0.02
Container40 | 36.74 37.01 36.94 0.07 0.27 0.20
Mother24 36.54 36.69 36.64 0.05 0.15 0.09
Mother48 38.77 39.63 39.52 0.11 0.86 0.75
Mother72 40.26  41.58 41.50 0.08 1.31 1.24
Mother96 41.51 42.93  42.83 0.10 1.42 1.32
Foreman48 33.15 33.36 33.27 0.09 0.21 0.12
Foreman96 37.09 37.24 37.16 0.08 0.15 0.07
Foremanl44 | 38.38 39.53 39.39 0.14 1.15 1.01
Foreman192 39.55 41.22 41.04 0.19 1.68 1.49
Foremanl112 | 30.96 31.14 31.08 0.06 0.18 0.13
Foreman224 | 35.06 35.16 35.09 0.07 0.11 0.03
Foreman336 | 36.93 36.99 36.90 0.08 0.06 -0.03
Foreman448 | 37.92 38.24 38.18 0.06 0.33 0.27
Stefan1024 32.04 32.26 32.16 0.10 0.22 0.12
Stefan2048 35.99 36.35 36.23 0.12 0.36 0.24
Stefan3072 37.75 39.14  38.92 0.22 1.40 1.17
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Fig. 20. Luminance PSNR vs. frame for four sample sequences at standard MPEG-4 test rates.
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Figures 20 and 21 show a more detailed look at PSNR vs. Frame for specific sequences. Four

sequences coded at standard MPEG-4 test rates are depicted in Figure 20. In each case, it is

evident that the adaptive schemes show a consistent improvement over the fixed quantizer, and

that the 1-Pass algorithm has performance only slightly below that of the 2-Pass algorithm. Higher

encoding rates for the same sequences are shown in Figure 21. It is clear from these plots that the

gain for the adaptive schemes is much higher at these rates, and that again the 1-Pass and 2-Pass

schemes are nearly equivalent.

Fig. 21. Luminance PSNR vs. frame for four sample sequences at higher bit rates.
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Fig. 22. Two dimensional vector representation of a single quantized matching pursuit stage. This is used
in the proof of Equation (5), as shown in Appendix A.
dib;

VII. CONCLUSIONS

Frame adaptive quantizer designs have been shown to outperform the fixed quantizer used in
earlier matching pursuit video coding work. Our design uses a combination of adaptive dead zone
subtraction and a UTQ with adaptive stepsize. A 2-pass algorithm was shown to choose a nearly
optimal balance between the quantizer precision and the number of coded atoms, and hence comes
close to minimizing overall coding distortion D for a given target rate R. A 1-pass algorithm was
shown to have nearly the same performance, but with complexity similar to that of the original
fixed quantizer design. Small improvements of .1 to .4 dB are shown for the MPEG sequences at
standard rates, and larger gains of up to 1.7 dB can be shown for the same sequences at higher
bit rates.

APPENDIX A
Equation 5 stated that the single-stage energy reduction for matching pursuit can be represented as:
ER; = p;® — d;®

Proof: Since p; is the projection of ﬁ_l onto basis element I;i, the difference fz = f;_l - pil-;i will be orthogonal to Ei, as
shown in Figure 22. f;’ would be the remaining signal energy for the current stage in the absence of quantization, and is also
orthogonal to the quantization error d,l_fz We can thus apply the pythagorean theorem twice to get:

|

2

-

ﬁ—1||2= \pibi 2+|f2 (15)

Since f—; is the remaining signal energy with quantization, we can combine the two above equations to see that the single stage
energy reduction is:

2

ﬁ2—|ﬁ2+|di5i (16)

o 2 SN2 -2 -2
| f¢71|| - | fil| = \pibi - | d;b; 17)
-2
= (Ipil* — |di)*) || B (18)
which is equal to p? — d? since Ez is unit-norm.0O
APPENDIX B

Proof of Claim 1: Qopt(-) is the optimal scalar quantizer for the system, which therefore codes the given residual signal to
rate R using some number of atoms N to achieve the minimum overall distortion D. Take (r,d) to be the quantizer rate and
distortion produced by Qopt(:). For the moment, assume that Qopt(+) is not the optimal ECSQ for the DZ-subtracted modulus
distribution produced in coding. Then there exists a quantizer which achieves a lower scalar quantization error at the same
average rate, that is

3Q'(*) st. ' =r and d' <d
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Note that (r’,d') is the rate-distortion point produced by quantizer Q'(-). We are implicitly assuming that the DZ-subtracted
modulus distribution is unaffected by application of either in-loop quantizer. This is a reasonable assumption considering the
results shown earlier in Figure 9.
Assumption 1 shows that this new quantizer Q'(-) will hit the target rate R with the same number of atoms as the optimal
quantizer, since for coding N atoms,

Ry = Nr' = Nr=Rq

and the other contributions (Rpg4, + Rmot + Rp + Ry) are approximately constant with change in quantizer.

Since the number of atoms N is constant and d’ < d, Assumption 2 implies that D’ < D. This is a contradiction, since Qopt(-)
is given to be the optimal quantizer for the system. Therefore our momentary assumption must be incorrect, and Qopt(-) must
be the optimal ECSQ for the given modulus distribution.O

REFERENCES

[1] ISO/IEC 13818-2, “MPEG-2 video coding standard,” March 1995.

[2] ITU-T Recommendation H.263, “Video coding for low bit rate communication,” ITU Document, September
1997.

[3] ISO/IEC JTC1/SC29/WG11, “MPEG-4 visual coding standard,” Final Draft of International Standard, De-
cember 1998.

[4] S. A. Martucci, Iraj Sodagar, T. Chiang, and Y.-Q Zhang, “A zerotree wavelet coder,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 7, no. 1, pp. 109-118, February 1997.

[6] Ralph Neff and Avideh Zakhor, “Matching pursuit video coding at very low bit rates,” IEEE Transactions on
Clircuits and Systems for Video Technology, pp. 158-171, February 1997.

[6] Stéfane Mallat and Zhifeng Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Transactions
on Signal Processing, vol. 41, no. 12, pp. 3397-3415, December 1993.

[7] Ralph Neff, Toshio Nomura, and Avideh Zakhor, “Decoder complexity and performance comparison of matching
pursuit and MPEG-4 video codecs,” in Proceedings of the IEEE International Conference on Image Processing,
1998.

[8] Osama Al-Shaykh, Eugene Miloslavsky, Toshio Nomura, Ralph Neff, and Avideh Zakhor, “Video compression
using matching pursuits,” IEEE Transactions on Circuits and Systems for Video Technology, September 1998.

[9] C. de Vleeschouwer and B. Macq, “New dictionaries for matching pursuit video coding,” in Proceedings of the
IEEE International Conference on Image Processing, 1998, pp. 764-768.

[10] D. Redmill, D. Bull, and P. Czrepiniski, “Video coding using a fast non-separable matching pursuits algorithm,”
in Proceedings of the IEEE International Conference on Image Processing, 1998, pp. 769-773.

[11] ISO/IEC JTC1/SC29/WG11, “MPEG-4 video verification model 11.0,” MPEG Document N2172, March 1998.

[12] N.S. Jayant and Peter Noll, Digital Coding of Waveforms, Prentice-Hall, Englewood Cliffs, NJ, 1984, Chapter
4.

[13] Kendall Atkinson, Elementary Numerical Analysis, John Wiley and Sons, New York, 1985, Chapter 7.

[14] Alan Gersho and Robert Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers,
Boston, 1991, Chapter 9.

[15] G. Sullivan, “Efficient scalar quantization of exponential and laplacian random variables,” IEEE Transactions
on Information Theory, vol. 42, no. 5, pp. 1365-1374, September 1996.

[16] Ralph Neff, Practical Methods for Matching Pursuit Video Compression, Ph.D. thesis, U.C. Berkeley, December
1999.



