Matching Pursuit Video Coding
Part I: Dictionary Approximation

Ralph Neff and Avideh Zakhor
Electrical Engineering and Computer Science
University of California, Berkeley

Abstract

We have shown in previous works that overcomplete signal decomposition using matching pursuits is
an efficient technique for coding motion residual images in a hybrid video coder. Others have shown that
alternate basis sets may improve the coding efficiency or reduce the encoder complexity. In this work, we
introduce for the first time a design methodology which incorporates both coding efficiency and complexity
in a systematic way. The key to the method is an algorithm which takes an arbitrary 2-D dictionary
and generates approximations of the dictionary which have fast 2-stage implementations according to the
method of Redmill, et.al. [1] By varying the quality of the approximation, we can explore a systematic
tradeoff between the coding efficiency and complexity of the resulting matching pursuit video encoder. As
a practical result, we show that complexity reduction factors of up to 1000 are achievable with negligible
coding efficiency losses of about 0.1 dB PSNR.

I. INTRODUCTION

Most video compression systems in use today are built on a hybrid motion-compensated trans-
form structure (e.g. [2][3][4]). Such systems predict the current frame using motion compensation,
and then transmit the prediction error residual using a transform, usually the discrete cosine trans-
form (DCT). In previous work, we demonstrated that improved coding efficiency may be achieved
by replacing the DCT with an overcomplete transform [5][6]. A greedy matching technique was
used to decompose the residual image into atoms, which are coded basis functions from an over-
complete dictionary. Because the dictionary is large and varied, each coded atom closely matches
the local signal to be coded. The structure of the basis set is thus not imposed on the reconstructed
image, and systematic artifacts such as block edges and ringing are reduced. The result is both a
visual and a PSNR improvement over standard DCT-based video coders [7].

Dictionary design is an important topic, affecting both the coding efficiency and complexity of the
resulting system [8][9]. For coding efficiency, the dictionary should be designed so that structures
in the motion residuals may be built using as few dictionary functions as possible. Complexity
is determined in large part by the number of dictionary functions and their spatial extent, since

matching pursuit encoding is based on exhaustively computing the inner products between the
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Fig. 1. Basis design paradigms for matching pursuit. (a) Old paradigm based on initial computational
restrictions. (b) New paradigm enabled by dictionary approximation.
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residual signal and all translates of the dictionary functions in a local area. The complexity of this

inner product computation may be drastically reduced by assuming a computationally efficient
dictionary structure such as 2-D separable functions, and then designing the dictionary within this
restricted set. This paradigm is illustrated in Figure 1a. All previously published matching pursuit
dictionaries have been designed in this way [5][10][11][12][1][13].

There is a problem with this method of dictionary design. As the figure illustrates, any initial
restrictions reduce the size of the design space. Even if some “optimal” design procedure is used
within this restricted set of possibilities, a better design may exist outside of the set. For example,
restriction to separable 2-D functions is typical [5][10][11][13]. However, this excludes structures
like diagonal edges and curves. The resulting dictionary is then unable to efficiently code such
structures, which are both commonly present and perceptually important [14][15].

By lifting these initial restrictions and allowing arbitrary 2-D functions to exist in the dictionary,
coding efficiency may be improved. In fact, well-known optimization techniques such as the Lloyd
algorithm [16] might be adapted to optimize the coding efficiency of the dictionary.! Unfortunately,
if no computational structure can be assumed, then the inner product computation requires full,
nonseparable 2-D matching. For example, it was shown in [5] that full 2-D matching was 12.8
times more complex than an efficient separable implementation of the given dictionary.

In this work, we start with an arbitrary 2-D dictionary and develop a framework for gener-
ating approximations of that dictionary which have fast implementations. This enables a new
design paradigm, as illustrated in Figure 1b. An initial dictionary is chosen without complexity
restrictions, as shown by the “o” symbol in the figure. In choosing this dictionary, any design or

optimization techniques may be used. The approximation procedure is then employed to generate

! This has effectively been done in [13], but there the optimization was restricted to 2-D separable dictionaries.



“e”. The second dictionary approximates the first, and is thus ca-

a second dictionary, as shown by
pable of similar coding efficiency. However, the second dictionary allows for a fast implementation.
Specifically, it is built to accomodate an efficient 2-stage implementation introduced in [1].

A further advantage is gained by allowing the quality of the approximation to be set by the
user. At high quality, the approximated dictionary may be arbitrarily close to the original, and
thus may approach the original in coding performance. By reducing the approximation quality,
implementation complexity is also reduced. The framework thus allows a tradeoff between approx-
imation quality and encoder complexity. As will be shown in Section IV, this leads to a systematic
tradeoff between coding efficiency and complexity.

The paper is organized as follows. Section II reviews previous matching pursuit video coding
systems, particularly those relevant to dictionary design. Section IIT develops the details of dictio-
nary approximation. The method by which the approximations are generated is developed mainly

in Section I11-B, and implementation issues for the resulting encoder are discussed in Section ITI-C.

Encoding results are shown in Section IV, followed by conclusions in Section V.

II. REVIEW OF PREVIOUS WORK

We begin with a review of matching pursuit video coding. Section II-B then discusses alternate
dictionaries proposed by other authors. The 2-stage dictionary structure of Redmill, et.al. [1] is

particularly relevant, so this will be reviewed in Section II-C.

A. Matching Pursuit Video Coding

Matching pursuit video compression was defined in [17][5] and is shown in block form in Figure 2.
Figure 2a shows the hybrid encoder in which motion compensation is used to predict the current
frame from the previous reconstructed frame. The prediction image is subtracted from the current
original image to get the motion residual image, f Matching pursuit coding is applied in the “Find
Atoms” block of the figure, which decomposes f into the weighted summation of N coded basis
functions, or atoms. Each atom is described by its position (z,y), an index « into the dictionary
of basis shapes, and a weighting value or modulus, p. When all atoms are found, these parameters
are efficiently coded and sent to the decoder which recovers the coded motion residual and uses it

to build the reconstructed image. The decoding procedure is shown in Figure 2b.
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The method used to decompose f into atoms is areedy multistage otimization introdced
in [18]. At each stage i, a single basis function t_‘% is chosen from the dictionary in order to best
represent the remaining signal energy f; , where f(; = f An energy pre-search identifies a local area
in which to place the atom. The exact atom is then chosen by an exhaustive local inner product
search. That is, each dictionary function t; is centered at each location (z,y) in the local region

and the location and basis are chosen which maximize modulus p:

p= <f';at_‘('y,m,y)> (1)

The chosen atom is then subtracted from the residual image in an atom update step:

-

.ﬁ+1 = .fz' - Q(pz) t(’y,z,y)i (2)

Note that a quantizer Q(-) is applied to the chosen modulus before the update step. The decoder

is thus able to recover the coded residual image, which approximates f as:

N-1

fr z% Qi) iy .9); (3)
i=

The dictionary used in [5] consists of the separable 2-D Gabor functions shown in Figure 2c.
Each atom is a single basis shape from the figure placed at some spatial location (z,y) in the
coded residual image. Note that the “Old Paradigm” from Figure la was used to design this set.
Specifically, the design was restricted to separable 2-D Gabor functions, and an ad-hoc training
method was used to select 20 1-D filter functions to be applied both horizontally and vertically to

define the dictionary. The mathematical specification of these functions is provided in [5].



B. Other dictionaries

Several alternate dictionaries have been proposed by others. Chou, et.al. [13], exploited simi-
larities between matching pursuit and Gain-Shape Vector Quantization [19] in order to optimize a
matching pursuit dictionary for coding efficiency. The dictionary was first restricted to separable
2-D functions, and so the “Old Paradigm” of Figure la applies. Within this restricted set, an
iterative training algorithm was used to design a new dictionary, and PSNR improvement was
shown in certain cases.

Several recent works have proposed dictionaries based on “factorized” separable filters. The
dictionaries are designed so that large filter functions are realized by successive application of short
kernel filters, thus reducing the complexity. A wavelet packet basis using Haar filters was proposed
by de Vleeschouwer and Macq [10]. An alternate factorized dictionary which approximates a
separable Gabor set was shown by Czerepinski, et.al. [11]. Because separability is assumed, these
cases both follow the old paradigm of Figure la. Further, these methods are unable to implement
arbitrary 2-D functions, and so are unsuitable for our current purpose.

A more flexible dictionary structure was proposed by Redmill, et.al. [1]. In the context of
Figure la, Redmill’s dictionary functions were restricted to simple oriented edge patterns, each
constructed from weighted combinations of a few functions from a smaller elementary dictionary.
This careful construction was then shown to enable an efficient implementation based on a 2-stage
filtering structure. Because our method is based on a generalization of this 2-stage structure, we

now review the original work in detail.

C. Fast 2-Stage Implementation

In Redmill, et.al. [1], each function in a target dictionary T' is composed of a weighted summation
of functions from a simpler elementary dictionary S. It then becomes possible to compute the target
inner products as weighted summations of the elementary inner products. For example, suppose

teT and 81,85 € S are defined such that £ =¢8] + c255. Then
<f_z’a£> =C <f;a§1>+62 <ﬁ7§2> (4)

More generally, the inner products needed for matching pursuit decomposition may be computed

using the 2-stage filtering structure shown in Figure 3. For a particular atom stage ¢, the inner



Fig. 3. A two-stage filtering structure used by Redmill, et.al., for efficient implementation of a nonseparable
dictionary.
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products between f; and the required (z,y) positional translates of the elementary functions s, €
S are first computed. This produces A elementary inner product buffers u,(z,y). Weighted
combinations of these elementary inner products are then used to form B target inner product
buffers vy(x,y). These represent the inner products between ﬁ and the positional translates of
each target dictionary function #,. The largest inner product among all the v(z,y) may thus be
used to determine the atom to code for stage ¢. Note that the interconnect box which forms the
target inner products is defined by B equations, each a generalization of Equation (4).

The above structure has several advantages which may be exploited for computational efficiency.
First, elementary dictionary S may be designed around a computationally efficient structure, even if
target dictionary T' does not share that structure. A second advantage comes from the introduction
of a progressive update step for the elementary inner product buffers. Rather than recomputing
uq(z,y) for each atom stage i, the elementary filtering is done only once per frame. Each atom

stage then consists of these steps:

1. Find Atom: Apply the interconnect equations to compute target inner products vy(z,y)
over a local search area. The largest target inner product selects the i** atom.

2. Atom Update: Subtract the selected atom from f; as in Equation (2).

3. Elementary Update: Recompute only those elementary inner product values in ug(z,y)
which were affected by the atom update step.

For the third step, the range of affected inner products within each elementary buffer u,(z,y) will
depend on the extent of the chosen atom as well as that of the associated elementary dictionary
function 3,. An efficient update procedure shown in [1] allows this step to be done at a cost of
only one multiply-accumulate per affected elementary inner product.

A third complexity advantage arises from a special dependency structure that may be built



TABLE 1
SOURCES OF COMPLEXITY FOR THE FAST 2-STAGE IMPLEMENTATION.
[ Label [ Description | Depends on | Counted |

T(IF) Initial Filtering Image Size, Per

— Compute uq(z,y) Elementary set S Frame
T(FA) || Find Atom Interconnect equations, Per

— Compute vp(z,y) from uq(z,y) Local search extent Atom
T(EU) || Elementary Update Atom Update Extent, Per

— Update uq (z,y) as needed Elementary set S. Atom

into the dictionary. Suppose target dictionary functions #, are ordered by index b, and the target
inner product buffers are computed in the same order. When computing the inner products to
fill a particular buffer vy(z,y), the previously computed inner products in buffers vy (z,y),d’ < b
are available. Redmill’s dictionary was carefully designed to construct each target #, from a
previous target #,, with the addition of one or two functions from S. Each inner product in
vp(z,y) is thus formed by combining a previously computed target inner product with one or two
previously computed elementary inner products. By recycling inner product computation in this
way, complexity is significantly reduced.

The inner product computation complexity may be divided into three sources, as illustrated in
Table I. The initial elementary filtering complexity is called I'(I F'). This covers initial computation
of elementary buffers uy(z,y), which is done once per coded frame. This complexity depends on
the elementary dictionary S, taking into account any available structure for fast computation.

The other two sources of complexity are I'(FA) and I'(EU), which represent the Find Atom
and Elementary Update steps. T'(F'A) is the operation count due to applying the interconnect
equations in order to compute the target inner products from the already computed elementary
buffers. The atom search is done in a local area near an energy peak [5], and so the target inner
products for each atom stage need only be computed within a local area of fixed size. I'(F'A) thus
depends on the size of this local search region, as well as on the interconnect equations.

['(EU) is the operation count used to update the elementary buffers after the selected atom
is subtracted from the remaining residual signal. Because only the values affected by the atom
update are recomputed, the complexity depends on the extent of the selected atom.

We analyze the implementation complexity of Redmill, et.al. [1], by considering each of the



components shown in Table I. Initial filtering complexity is computed as

A
['(IF)=4P ) L(a) (5)

a=1
operations per frame. Here P is the total number of image pixels, and L(a) is the length of the
1-D filter used to define each of the A separable 2-D elementary filters §,. This equation assumes
that an Lx L separable filter costs 2PL multiplies and an equal number of adds, for a total of
4PL operations [20]. The find atom complexity was estimated in [1] to be I'(FA) = 128 4 2569
operations per atom, where €2 is the number of pixels in the local atom search area. The elementary
update complexity is signal dependent, but we estimate it by assuming that an average atom update
affects a 16x16 image region. Within elementary buffer u,(z,y), the atom update then affects the

inner products in a square region 16 + (L(a) — 1) pixels on a side. To update all affected buffers

using the efficient update method of [1] requires

A
Z (15 + L(a (6)

operations per atom. If a particular frame is coded to N atoms, then the number of operations
used to code that frame is:

I'(IF)+ N-(T'(FA) + T(EU)) (7)

As an example, suppose we are coding a QCIF sequence at 24 kbit/s and 10 frame/s. The
number of image pixels is P = 38016, and N = 100 atoms per frame is typical for our experiments.
Redmill’s dictionary contains A = 8 filters with lengths L(a) € {1,3,5,7,11,15,23,31}. Using a
16x16 local atom search as in [5], we get Q = 256. Using these values, Equation (7) gives a total
of about 22.5 million operations per frame. A comparable frame encoding using the separable
2-D Gabor dictionary pictured in Figure 2¢ would cost 340 million operations, using the analysis
provided in [5]. The Redmill dictionary is thus 15.1 times faster for this encoding scenario.

Because our method will be designed to take advantage of the same 2-stage structure detailed
above, a similar complexity analysis will be used to evaluate the complexity of our approximated
dictionaries in Sections III-C and IV. The above exercise also identified three distinct sources of
complexity and outlined the factors on which each depends. This will provide insight into the

development of the approximation system, as described in Section I1I-B.



III. DICTIONARY APPROXIMATION
A. Owverview of method

Consider an arbitrary initial dictionary Ty = {ﬁo,b) ,b=1... B} which has been designed without
encoder complexity constraints. For example, Ty might be optimized for coding efficiency using
any available optimization technique. We wish to generate approximations of Ty which have similar
coding efficiency, but which have reduced complexity encoder implementations. In this section, we
show a method for generating dictionaries T, = {fiq,b),b: 1... B}, each of which approximates Tp
to some quality index ¢. Each index ¢ has an associated target distortion D(q) which has been set
by the user in order to control the quality of the approximation. Further, 7, is designed to allow
an efficient 2-stage implementation using the structure proposed in [1].

To generate T;, we apply the matching pursuit algorithm in a novel way. Suppose each EEO,b) is
to be approximated as a weighted combination of simpler elements called “construction atoms.”
For a given b, each construction atom 1 has an associated weight c(y ) and a unit norm basis
shape 7y ), which is selected from an appropriately defined construction dictionary R;. Matching

pursuit itself is then used to decompose (g ) on Rp. This produces a set of construction atoms ¥y

which approximate the original dictionary function as:

Hos) R ) = D Cub)Twh) (8)
PeY,

Because each ﬁo,b) is expressed as a summation of simpler elements, the complexity advantages
discussed in Section II-C may be exploited. Specifically, the collection {¥,,b=1... B} is used to
define the interconnect equations for a fast 2-stage matching pursuit encoder based on Figure 3.
A special dependency structure was built into the dictionary of Redmill, et.al. [1] in order to
further reduce complexity. We build a similar structure into our approximated dictionary by
constructing Rp in a special way. Consider the original dictionary functions ﬂo,b) to be ordered by
index b, with the approximations generated sequentially. For the first target with b = 1, we define

Ry, to be some pre-designed elementary dictionary S. For the later targets, Ry is defined as:
Ry =S U {f(gp),b < b} (9)

Later targets are thus constructed from the approximations of earlier targets. This allows inner

product computation to be efficiently recycled in the 2-stage encoder implementation. The use of
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Fig. 4. A summary of the generation algorithm.

Initialization:

Assume elementary set S, target set Tp, and target distortion D(q) are given.

Approximated set Ty is initially empty.

Approximation:

For b =1 to B;

o Decompose (g, ) using matching pursuit with dictionary R as defined in Equation (9). Take
each coded atom to be a construction atom ¢ in an approximation of the form given in Equation (8).
Stop when the constructed approximation %4 ;) satisfies distortion criterion (10).

o Update Ty = Ty U {f(g.5)}

Next b;

dependency leads to significant complexity reduction, as will be demonstrated in Section ITI-B.
The generation algorithm decomposes each fio,,,) on the appropriate dictionary Ry. Construction
atoms are added until the following distortion criterion is met:

H—» —

2
t(g,5) — t(0,0) H < D(q) (10)

In this way, D(q) controls the approximation quality. A smaller value of D(q) results in a higher
quality approximation. However, this requires additional construction atoms, each of which adds
complexity to the interconnect equations shown in Figure 3, and hence to the final 2-stage imple-
mentation. There is thus a tradeoff between the quality of the approximation and the complexity
of the resulting video encoder.

A summary of the generation algorithm is given in Figure 4. Suppose that elementary dictionary
S, together with all (z,y) positional translates, is at least complete. In this case, a solution of the
form given in Equation (8) which satisfies distortion criterion (10) is guaranteed to exist for any
D(q), and matching pursuit will always converge to a valid solution [18].

The proposed system may be divided into two major stages as shown in Figure 5. Figure 5a
shows the generation stage. In this stage, the generation algorithm is applied to dictionary Ty, and
the interconnect parameters W, are generated for each target. The fast 2-stage encoder is then
realized in an implemenation stage as shown in Figure 5b. This stage performs matching pursuit
residual encoding using dictionary 75, which approximates Ty to distortion level D(g). Because
Ty is constructed according to Equation (8), the various advantages discussed in Section II-C are
exploited to reduce the complexity. The encoding block described by Figure 5b is then used to
encode motion residual signals in the video encoding system pictured in Figure 2a.

Figures 5a and 5b provide a summary of the dictionary approximation method, and identify the

two major stages. Details of the generation stage will be given in Section I1I-B, and implementation
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Fig. 5. The two stages of dictionary approximation. (a) Generation of the approximated dictionary, Tj.
(b) Implementation of a fast 2-stage matching pursuit encoder which uses dictionary T,.
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details will be discussed in Section ITI-C.

B. Generation

In this section, we develop the generation stage of Figure ba. We complete the earlier description
by providing details on the design of elementary set S, and on the handling of dependency. We
also introduce improvements which further reduce the complexity of the generated dictionaries. In

the final subsection, sample generation results are presented and discussed.

B.1 Elementary Set Design

We first discuss the design of elementary set S. This has a direct impact on complexity, since
both initial filtering complexity I'(IF') and elementary update complexity I'(EU) depend on S.
In particular, I'(IF) may be reduced by basing S on a computationally efficient structure. The
design of S also affects interconnect complexity I'(F A), since each approximated target must be
constructed using elements of S. It is desirable to design S such that each t_io,b) € 1y may be
sufficiently approximated using few construction atoms, since this in turn lowers I'(F'A).

The problem of designing S to efficiently “encode” the functions in the original dictionary Tj
is analogous to the problem of designing Ty to encode motion residual signals f However, the
inclusion of dependency makes any optimal design of S much more difficult. The reason is that
the dictionary used for matching pursuit during the generation stage is not S, but construction
dictionary Rp. While this dictionary depends on S, it also depends on Ty and effectively grows
throughout the generation process. For this reason, there is no straightforward method for design-
ing S to minimize the complexity for a particular approximation Tj.

For our current experiments, we propose an ad-hoc elementary dictionary design based on a
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Fig. 6. Implementation of elementary dictionary S. (a) Definition of the simple 1-D filters. (b) Cascade
filterbank in which the 1-D filters are applied in order to compute the elementary inner products. Trivial
filtering operations are shaded. (¢) Effective 2-D elementary dictionary.
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cascade filterbank structure. Each elementary buffer u,(x,y) is computed from a previously defined
elementary buffer by application of a single 1-D filter in either the horizontal or vertical direction.
These simple 1-D filters are defined in Figure 6a, and the application of these filters is specified
by the filterbank diagram in Figure 6b. The filterbank effectively implements the 16 element 2-D
dictionary pictured in Figure 6¢c. The elements of this dictionary range in size from 1x1 to 9x9
and approximate 2-D Gaussian functions. Note that each of the 1-D filters is designed to have
only a small number of nonzero taps, nearly all of which are unity in order to reduce the number
of required multiplications. The resulting implementation requires fewer than three operations per
computed elementary inner product.

As a final note, the design of S has a large impact on the memory requirements at the final 2-
stage encoder. This is because each elementary inner product buffer u,(z,y) is essentially a frame
buffer. Our encoder requires 16 such buffers. While memory requirements were not considered in

our design, one could restrict the size of S if encoder memory is a concern.

B.2 Dependency and Ordering

—

Dependency allows approximated targets ;) to be built from previously approximated targets
in some predetermined order. Inner products in vy(z,y) are then built from inner products in
previously computed target buffers, and complexity is reduced. As described earlier, we build

dependency into approximated dictionary T; through construction dictionary R, which grows
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throughout the generation process to include all previously approximated targets. However, the
complexity reduction achieved due to dependency is affected by the order in which the targets are
handled at the generation stage. Essentially, the targets should be ordered so that later targets
may be efficiently constructed from earlier, already computed targets.

Optimization of the order is a difficult combinatorial problem. We instead propose a heuristic
ordering algorithm which improves the dependency related complexity gains. The idea is that
larger targets should be constructed from smaller targets, and so the ordering is done by size.
All pixels in each unit-norm 2-D target function F(O,b) are compared to a constant threshhold, and
absolute values exceeding the threshhold are considered significant. The targets are then re-ordered
by increasing number of significant pixels. A threshhold of 0.25 is used for our experiments. With
the targets ordered by size, later targets with larger extents are efficiently built from earlier, smaller

targets. Fewer construction atoms are needed to construct each target, and complexity is reduced.

B.3 Other Generation Techniques

Two additional techniques are used at the generation stage to reduce encoder complexity. The
first is a “Natural Merge” step which combines any dictionary functions which have identical
representations in the approximated set. Although this seems to be an unlikely event, it becomes
quite common when dependency is enabled and D(q) is large. The second technique is to use
Orthogonal Matching Pursuit (OMP) [21] at the generation stage. This reduces the number of
construction atoms used to construct the target dictionary, and so reduces the complexity of the

encoder implementation. Additional details on these two techniques may be found in [22].

B.4 Generation Results

To illustrate the concepts discussed above, we applied the generation algorithm to three matching
pursuit dictionaries. The first is the 2-D separable Gabor dictionary introduced in [5] and shown in
Figure 2(c). We call this the standard dictionary, and label it as “std.” Two additional dictionaries
are formed by adding oriented Gabor functions to “std.” The added functions are shown in
Figure 7, and the resulting hybrid dictionaries are labeled “h30” and “h45” since they contain
functions oriented at 30 and 45 degrees, respectively.

We use the generation algorithm to create approximate dictionaries T; for each original dic-
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Fig. 7. Oriented Gabor functions added to expand the original 2-D Gabor library shown in Figure 2c. (a)
Functions added at multiples of 30 degrees to form the “h30” set. (b) Functions added at multiples of
45 degrees to form the “h45” set.

tionary over a wide range of D(gq). We repeat this process four times to illustrate the different
generation options discussed in the previous subsections. Results are plotted in Figure 8 in terms
of the average number of construction atoms per target. The number of construction atoms ef-
fectively determines the interconnect complexity I'(F'A), and so fewer construction atoms in the
plots leads to a lower implementation complexity.

The four variants of generation shown in Figure 8 may be described as follows. Case (A) shows
the minimal set of options, using neither OMP nor dependency. Turning dependency off means
Ry = S throughout the generation process, and so each approximated target must be built entirely
from elementary functions. For case (B), OMP is turned on. As a result, the number of construction
atoms is reduced compared to case (A) at small values of D(g). In case (C), dependency is turned
on, and the targets are approximated in a random order. To reduce the likelihood of outliers, the
experiment is repeated using five different random target orderings and the results are averaged to
produce each plot point. We see that even when the approximation order is random, dependency
yields significant improvement, reducing the number of construction atoms by nearly a factor of
two for some values of D(g). Finally in case (D), dependency is combined with our heuristic
ordering algorithm. This further reduces the number of construction atoms by up to 25 percent.
The curves for case (D) produce the fewest construction atoms per target, and so are used for the
remainder of our experiments.

After generation, duplicate functions in T, are eliminated using the natural merging step de-



Fig. 8. Number of construction atoms (catoms) per approximated target as a function of D(q). Each subplot

shows a different original dictionary. Generation is done using various combinations of orthogonal

matching pursuit (OMP), dependency, and target ordering.

Fig. 9. Number of approximated dictionary functions B, remaining after the merging step, as a function
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scribed earlier. This reduces the number of dictionary functions at the implementation stage from
B to some number B, < B. This effect is illustrated in Figure 9, which plots B, against D(q) for
approximations of all three dictionaries. Note that for large values of D(q) the number of remain-
ing dictionary functions falls below 10 percent of the original number. Merging thus contributes
greatly to complexity reduction when D(q) is large.

Figure 10 shows four sample functions from the “h30” dictionary approximated to various D(q).

The first column shows the original target functions, and the remaining columns show the approx-
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Fig. 10. Some sample approximated functions from the “h30” dictionary.

Approxunated to D(q) =
Original 0.1 0.3 0.5
-’J- - .. | . - . -

imated functions. As seen in the figure, small values of D(q) result in accurate approximations

of the original targets. As D(q) increases, the approximated functions look less and less like the
originals. An interesting side effect is that the functions shrink as D(q) increases. This is explained
by noting that the original targets are 2-D Gabor functions, each constructed from a Gaussian
window. The energy of each target thus peaks in the center and trails off at the outer edges with
the tail of the Gaussian window. The greedy matching method used for generation tends to code
the high-energy central region of each Gabor function first, and the lower energy outer regions
later. That is, f‘(q,b) is built from the center outward. As D(q) increases, fewer construction atoms
are used, and the extent of the approximated function gets progressively smaller.

The power of dependency may be illustrated by comparing the approximated functions in Fig-
ure 10 with the plots in Figure 8. Although intricate approximations are shown for D(q) = 0.1,
the plots reveal that such functions are built with an average of only 2 to 3 construction atoms
per target. This is possible only because functions are built progressively from previously approx-
imated targets. For example, the diagonal line in Figure 10c is constructed from shorter lines
at the same orientation. Such short diagonals may be found in the original dictionary shown in
Figure 7a. Heuristic ordering ensures that small building blocks are approximated early, and are

thus available to contribute to larger targets which are approximated later.
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Fig. 11. Procedure used at implementation to encode each motion residual. Steps which result in significant
complexity are labeled in the right column.

| Program Flow | Complexity |

Initial elementary filtering T(IF)
(compute initial values for all uq(z,y))

Do {
Apply interconnect equations to select next atom T(FA)
Subtract chosen atom from residual
Update elementary buffers T(EU)

} until encoding bit budget is exhausted.

TABLE II
INITIAL FILTERING COMPLEXITY I'(IF) FOR TYPICAL FRAME SIZES. THE RIGHT COLUMN SHOWS
AVERAGE COMPLEXITY PER COMPUTED ELEMENTARY INNER PRODUCT.

Frame Subimage Extent T(IF) ops per
Size Luma Chroma(x2) | ops/frame | inner product
QCIF | 176x144 88x T2 1.40 million 2.31
CIF 352288 176x 144 5.47 million 2.25
SIF 352240 176x120 4.58 million 2.26

C. Implementation

We now describe the implementation stage, as shown earlier in Figure 5b. The basic implemen-
tation steps are similar to that of Redmill, et.al. [1], and are summarized in Figure 11. Details of
these steps differ somewhat from the original implementation in [1]. We now provide these details,

and also discuss the complexity of each step.

C.1 Initial Elementary Filtering

In the initial filtering step, the elementary dictionary defined in Figure 6 is applied to the original
motion residual f Inner products between f and all spatial translates of the elementary dictionary
functions are computed. These values are placed in elementary buffers u,(z,y), where a ranges
from 1 to A and (z,y) covers the entire image to be coded. The procedure must be applied to
both luma and chroma subimages. Note that A = 16 for our elementary design.

If the frame size is known, the initial filtering complexity may be exactly computed from the
definitions in Figure 6. We summarize this complexity for typical frame sizes in Table II. The
final column measures the number of operations per computed elementary inner product averaged

across all 16 elementary inner product buffers.

C.2 Finding Atoms

In this step, the interconnect equations are applied to compute target inner products vy(z,y).

Each target inner product is a weighted combination of values from elementary inner product
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Fig. 13. Estimated elementary update complexity I'(EU) as a function of D(q). Values are computed
assuming all targets in T}, are equally likely to be selected as coded atoms.
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buffers and previously computed target inner product buffers.

Figure 12 plots interconnect complexity I'(F'A) as a function of D(q) for each of our three target
dictionaries. A 16x16 local atom search area is used, as in [5]. As seen in the plot, I'(F A) for “std”
ranges from a high of about 450,000 operations per atom at D(q) = 0.1 to a low of about 7200 for
D(q) = 0.8. Although I'(F'A) is not the only source of inner product complexity, it is the source
which depends most greatly on D(g). This property is important, since it allows approximation

quality to be traded for complexity in the final encoder implementation.

C.3 Elementary Update

After each atom is found and subtracted, the affected elementary buffer values must be updated.
The update is done using the method introduced in [1]. The cost is one multiply-accumulate per
updated inner product. The total cost I'(EU) is signal-dependent, since the range of affected
elementary inner products depends on the extents of the coded atoms. However, signal independent
estimates for I'(EU) may be computed if assumptions are made. Assume that all targets in Ty
are equally likely to be selected at each atom stage. The resulting elementary update complexity
is shown in Figure 13. We see that I'(EU) decreases as D(q) increases. This occurs because

approximated targets tend to shrink as D(q) increases, as shown earlier in Figure 10.
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C.4 Implementation Complexity

In the previous subsections, complexity analysis was done separately for I'(IF), I'(FA), and
['(EU), with the results displayed in Table II, Figure 12, and Figure 13, respectively. We now
show that for a given coding scenario, this data may be combined in order to compute a signal
independent complexity estimate. This is useful because it depends entirely on information known
at the generation stage. D(q) may thus be be adjusted at generation until the complexity estimate
matches the desired encoder complexity.

To illustrate the complexity estimation, we return to the simple example used to evaluate Red-
mill’s dictionary in Section II-C. Suppose we are coding a QCIF sequence at about 100 atoms per
frame using the “std” dictionary approximated to D(q) = 0.5. Initial filtering complexity I'(IF)
is 1.4 million operations per frame, as given in Table II. Interconnect complexity I'(F'A) is read
from Figure 12 as 53000 operations per atom. Likewise, elementary update complexity I'(EU) is

read from Figure 13 as 4300 operations per atom. Total complexity may thus be computed as
['(IF)+100- (I'(FA) +T(EU)) = 7.1 million ops/frame (11)

For the given coding scenario, the resulting dictionary is about 48 times faster than an efficient
2-D separable implementation of “std” [5]. It is also 3.16 times faster than Redmill’s dictionary,
according to the analysis given in Section II-C.

While complexity estimates are useful at the generation stage, final evaluation of the method
must be based on coding real sequences in order to measure both implementation complexity and

coding efficiency. Such results are presented in the next section.

IV. EXPERIMENTAL RESULTS

In this section, we present encoding results for dictionary approximation. We test the method
using the MPEG-4 test sequences and conditions as summarized in Table ITI-A. The rate control
method of [5] is used to match the rate of each coded frame to the experimental rate traces
generated in [7]. For a given frame, atoms are coded until a target number of bits is reached,
and the actual bit rate is typically within one or two percent of the target. Because the rate
is equalized in this way, a fair quality comparison can be made across coding experiments using

different approximated dictionaries.
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TABLE III
(A) CoMMON MPEG-4 TEST SEQUENCES AND CONDITIONS. (B) AVERAGE LUMINANCE PSNR For
EACH SEQUENCE ENCODED USING EACH ORIGINAL DICTIONARY WITHOUT APPROXIMATION.

Test Sequence Key Y-PSNR (dB) Y-PSNR Diff (dB)

(A) | Seq Name Kbit/s frame/s  size (B) [ Seq | std h30 h45 | (h30-std) (h45-std)
1 Container 10 7.5 QCIF 1 31.44 31.43 31.47 -0.01 0.03
2 Hall 10 7.5 QCIF 2 31.86 31.86 31.86 0.00 0.00
3 Mother 10 7.5 QCIF 3 33.22 33.42 33.42 0.20 0.20
4 Container 24 10 QCIF 4 34.41 34.32 34.32 -0.10 -0.09
5 Silent 24 10 QCIF 5 32.33 3241 3242 0.08 0.09
6 Mother 24 10 QCIF 6 35.89 36.02 35.86 0.13 -0.03
7 Coast 48 10 QCIF 7 30.26  30.26  30.26 0.00 0.00
8 Foreman 48 10 QCIF 8 31.563 31.77 31.81 0.23 0.28
9 News 48 7.5 CIF 9 32.40 32.60 32.51 0.20 0.11
10 Coast 112 15 CIF 10 27.57 27.61 27.62 0.04 0.05
11 Foreman 112 15 CIF 11 30.27  30.52  30.56 0.25 0.29
12 News 112 15 CIF 12 35.60 35.66 35.61 0.06 0.01
13 Mobile 1024 30 SIF 13 27.15 27.22  27.21 0.08 0.06
14 Stefan 1024 30 SIF 14 29.98 30.15 30.01 0.17 0.03

We will test approximations of each of the three dictionaries introduced in Section III-B. As a
preliminary step, we show average Y-PSNR results for each original dictionary without approxi-
mation in Table ITI-B. Recall that “h30” and “h45” are formed by adding oriented functions to the
2-D separable “std” dictionary. The differences shown in the final two columns of the table show
that including these oriented functions produces small PSNR gains for most sequences. The gains
are largest for sequences such as Mother and Foreman which contain many diagonally oriented
edges. For these sequences, gains between 0.2 and 0.3 dB can be seen.

Each original dictionary was approximated to each value of D(q) in {.1,.2,.3, .4,.5,.6,.7, .8}, re-
sulting in 24 different approximated dictionaries. Each dictionary was then efficiently implemented
as described in Section ITI-C. Each resulting encoder was then used to encode all 14 MPEG-4 test
sequences. Since each approximate encoder uses a different number of dictionary functions, a new
set of VLC tables must be trained for each. We generate these VL.C tables using a training set
composed entirely of sequences from outside the MPEG-4 test set.

Figure 14 shows PSNR and complexity results for three sequences encoded using various ap-
proximations of the “std” dictionary. In Figure 14a, average Y-PSNR is plotted against D(q) for
each sequence. The result for the original dictionary without approximation is shown as a dotted
line. The plots show that for small values of D(q), the approximated dictionary performs about as
well as the original. The approximate dictionary may slightly exceed the original in PSNR, as seen
in the Container and Mobile plots. This occurs because the merging of similar target functions

may increase the coding efficiency of the dictionary. The approximate dictionaries are close to the
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Fig. 14. Encoding results for “std” dictionary approximated to various distortion levels D(q). (a) Av-
erage Y-PSNR for original and approximated dictionaries. (b) Complexity of approximate dictionary
implementations measured as average operation count per frame.
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originals in performance for D(g) values up to about 0.6. Beyond this point, Y-PSNR decreases
more rapidly with D(q).

Companion plots of complexity vs. D(q) are provided in Figure 14b. Complexity is computed
as average operations per frame required for inner product computation. Analysis is similar to
that presented in Section ITI-C, but complexity sources I'(IF'), I'(F'A) and I'(EU) are now com-
puted from actual encoding statistics. As expected, complexity decreases as D(q) increases. The
complexity of the original “std” dictionary cannot be shown without greatly changing the plot
scale. We instead note that using the efficient 2-D separable implementation in [5], the original
complexity would be 1.66 x 10%, 6.79 x 10%, and 5.50 x 10° operations per frame for Container 10
kbit/s, Coast Guard 48 kbit/s, and Mobile 1 Mbit/s, respectively. In each case, approximation
with D(q) = 0.1 reduces complexity by a factor of about 7 compared to an efficient implementation
of the original “std” dictionary.

The tradeoffs due to approximation are more clearly shown in Figure 15. The vertical axis of
each plot shows the Y-PSNR loss due to approximation. This is found by subtracting the Y-PSNR
of the original dictionary from that of each approximated dictionary. In the context of Figure 14a,
the dotted line is subtracted from the solid line. On the horizontal axis of Figure 15, we plot the
speedup factor due to the approximation. This is the complexity of the original dictionary divided

by that of the approximated dictionary. Each point on each plot represents the encoding of a
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single test sequence using one of our approximated dictionaries. Figure 15a shows the tradeoffs
for the “std” dictionary. Here, original dictionary complexity is computed assuming the efficient
2-D separable implementation in [5]. The plots show that speedup factors above 40 are typically
reached in exchange for PSNR losses of 0.1 dB. Larger speedup factors are achieved in exchange
for additional PSNR loss. At higher rates, dictionary approximation is shown to reduce complexity
by more than two orders of magnitude for large D(q).

While the “std” dictionary is based on an efficient 2-D separable structure, dictionary approxi-
mation does not require any such structure of the original dictionary. In fact, the method may be
used to generate efficient implementations of arbitrary dictionaries. We illustrate this by showing
results for the “h30” dictionary. This dictionary is not 2-D separable, since it contains the oriented
functions shown in Figure 7a. For the original “h30” dictionary before approximation, we thus re-
sort to computing full 2-D inner products. The original dictionary is thus expensive to implement,
and so the complexity gains due to approximation are larger. This is reflected in Figure 15b, which
shows the coding efficiency and complexity tradeoffs for various sequences encoded with “h30”.
The plots show that speedup factors greater than 500 are often seen in exchange for PSNR losses
between 0.1 and 0.2. Speedup factors beyond 1000 are also possible, although the associated PSNR
loss varies significantly by sequence.

Given curves of the form seen in Figure 15, it is possible to determine the largest speedup factor
achievable for a given Y-PSNR loss. These values are presented in Table IV. The first set of
three columns shows the speedup factors corresponding to a 0.1 dB approximation loss. Typical
speedup factors for “std” range from 25 to 50. Larger factors between 150 and 800 are typical for
the “h30” and “h45” dictionaries. The Mobile sequence is particularly resistant to approximation
loss, allowing speedup factors beyond 1000 for less than a 0.1 dB loss. The second set of columns
shows the result for a larger 0.25 dB loss threshhold. Associated speedup factors typically fall
between 40 and 80 for the “std” dictionary, and between 400 and 2000 for “h30” and “h45”.

Note that in some cases, the Y-PSNR loss stays below the 0.25 dB threshhold for all tested
approximation levels. This occurs for Mother-10 with the “std” dictionary, and also for Mobile-
1024 with the “std” and “h45” dictionaries. A “+” symbol is used in Table IV to indicate that

speedup factors beyond the listed values are likely attainable.
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Fig. 15. Loss in Y-PSNR due to approximation error plotted directly against speedup factor. (a) Coding
results using the “std” dictionary. (b) Results using “h30” dictionary.
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TABLE IV
SPEEDUP FACTORS ATTAINABLE FOR APPROXIMATION LOSS THRESHHOLDS OF 0.1 AND 0.25 DB.
0.1 dB loss 0.25 dB loss
Sequence std h30 h45 std h30 h45
1 49.6 780 665 76.3 1238 995
2 34.0 184 446 49.8 797 729
3 39.7 557 513 60.0+ 759 677
4 25.8 796 765 70.3 1621 1571
5 39.5 637 548 73.0 960 909
6 15.5 373 925 59.1 1063 1536
7 56.4 830 766 87.5 1145 1098
8 33.8 135 459 64.3 711 666
9 9.6 7 155 35.5 266 343
10 25.7 220 283 44.6 606 546
11 23.2 144 171 41.0 420 493
12 8.2 307 472 43.5 705 669
13 165.4 1104 1369 | 250.0+ 2029 3470+
14 56.8 - 781 75.0 808 918

We now illustrate the visual coding performance of the method for Foreman at 112 kbit/s. Six

images of Frame 130 are shown in Figure 16. The rate targeting method described earlier in this

section insures that the bit rate for a given frame is approximately constant regardless of dictionary

or approximation level. For the particular frame detailed in the figure, the five different encodings

are each within two percent of a common target budget of 8924 bits.

Figure 16a shows the original frame, and Figures 16b and 16c show encoded frames using original

“std” and “h30” dictionaries, respectively. The additional oriented functions present in “h30” are
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seen to produce visual improvements in the coded frame. For example, the ear in Figure 16¢ is
clearer and more detailed than that seen in 16b. Diagonal lines on Foreman’s neck and shirt collar
are also much improved. Ringing is reduced in the diagonal lines present on the building, and the
shadow line above Foreman’s right shoulder is much sharper. This visual improvement comes at a
price in complexity. While the 2-D separable cost of the “std” dictionary encodes the sequence at
an average of 5.08 x 10® operations per frame, the general nonseparable implementation of “h30”
requires 1.02 x 10'° operations per frame. The implementation of “h30” is thus about 20 times
more expensive than “std”.

Encoding results using approximations of the “h30” dictionary are shown in Figures 16d-f.
Figure 16d was encoded with D(g) = 0.1, and appears quite similar to the result from the original
dictionary in Figure 16c. Figure 16e was encoded using D(g) = 0.3. Some small degradations
due to the approximation can be seen, particularly in the mouth area. However, the advantages
of the original “h30” dictionary are mostly still intact. These include sharp diagonal lines on the
building, and more detail in the ear and collar regions. Finally, Figure 16f shows the result for
D(q) = 0.6. By this point, some loss of quality is clearly seen on the face. However, many parts
of the image are still visually better than the “std” encoding shown in Figure 16b.

Average complexities for the sequences shown in Figures 16d, 16e, and 16f are respectively
1.33 x 108, 4.19 x 107, and 1.86 x 107 operations per frame. The approximations are respectively
3.83, 12.1, and 27.4 times less complex than the 2-D separable implementation of “std” which
produced Figure 16b. They are also respectively 77.0, 244 and 550 times less complex than the
nonseparable implementation of “h30” which produced Figure 16c. Our results illustrate a simple
application of the new design paradigm of Figure 1b. By allowing “h30” to contain nonseparable
functions, both PSNR and visual quality were improved. The resulting dictionary is not based
on an efficient computational structure. However, by applying dictionary approximation, low-cost

approximate implementations of “h30” were automatically generated.

V. CONCLUSIONS

In this work, we developed a method for generating approximations of arbitrary dictionaries with
fast 2-stage implementations. For a given dictionary, this allows coding efficiency to be traded for

encoder complexity in a systematic way. It also enables a new dictionary design paradigm which
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Fig. 16. Visual encoding results for frame 130 of Foreman at 112 kbit/s. (a) Original image. (b) Encoded
using “std” dictionary. (c) Using “h30” dictionary. (d) Using “h30” dictionary approximated with
D(q) = 0.1. (e) Using “h30” dictionary approximated with D(q) = 0.3. (f) Using “h30” dictionary

approximated with D(q) = 0.6.

SIEMEN
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is free from initial restrictions based on complexity concerns. We applied the method to the 2-

D separable “std” dictionary, and showed that complexity reduction factors between 40 and 80

are typical in exchange for small reductions in coding efficiency. We showed that larger gains are

possible when the method is applied to a more general dictionary without an efficient computational

structure. For such dictionaries, complexity reduction factors ranging from 100 to 1000 were shown

in exchange for a 0.1 dB approximation loss. Dictionary approximation may thus be employed to

efficiently implement matching pursuit using dictionary functions of arbitrary design.
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