
DICTIONARY APPROXIMATION
FOR MATCHING PURSUIT VIDEO CODING

Ralph Neff and Avideh Zakhor

Department of Electrical Engineering
University of California, Berkeley

ABSTRACT

Previously, we demonstrated an efficient video codec based on
overcomplete signal decomposition using matching pursuits. Dic-
tionary design is an important issue for this system, and others
have shown alternate dictionaries which lead to either coding effi-
ciency improvements or reduced encoder complexity. In thiswork,
we introduce for the first time a design methodology which in-
corporates both coding efficiency and complexity in a systematic
way. The key to our new method is an algorithm which takes an
arbitrary 2-D dictionary and generates approximations of the dic-
tionary which have fast 2-stage implementations. By varying the
quality of the approximation, we can explore a systematic trade-
off between the coding efficiency and complexity of the matching
pursuit video encoder. As a practical result, we show cases where
complexity is reduced by a factor of 500 to 1000 in exchange for
small coding efficiency losses of around 0.1 dB PSNR.

1. INTRODUCTION

Most video codecs in use today are based on a hybrid motion-
compensated transform structure. The current frame is predicted
using motion compensation, and the prediction error residual is
coded using a transform, typically the discrete cosine transform
(DCT). In previous work, we demonstrated that improved coding
efficiency may be achieved by replacing the DCT with an over-
complete transform [1]. Both PSNR and visual improvement over
standard DCT-based video coders has been shown [2].

Dictionary design is an important topic, affecting both thecod-
ing efficiency and the complexity of the matching pursuit encoder.
Complexity reduction is desirable, since matching pursuitis based
on a potentially expensive local inner product search. For this rea-
son, published matching pursuit dictionaries [1][3][4][5][6] have
typically been based on a complexity-restricted design. A com-
putable structure is initially assumed, for example 2-D separable
functions. The dictionary is then designed within this restricted set
of possibilities. This design paradigm is shown in Figure 1(a).

One problem with this design method is that the initial restric-
tions reduce the design space. Even if some “optimal” designpro-
cedure is used within the complexity-restricted set, a better design
may exist outside of the set. As an example, restriction to separa-
ble 2-D functions is typical [1][3][5][6]. However, diagonal edges
and curves are excluded from the resulting dictionary, which is
then unable to efficiently code such structures. By lifting the ini-
tial restrictions and allowing a dictionary of arbitrary 2-D func-
tions, coding efficiency may be improved. However, the resulting
system may be complex, since it has no computationally efficient
way to compute the inner products for matching pursuit.

In this work, we start with an arbitrary 2-D dictionary and de-
velop a framework for generating approximations of that dictio-
nary which have fast implementations. This enables a new design
paradigm, as illustrated in Figure 1(b). An initial dictionary is
chosen without complexity restrictions, using any design or opti-
mization technique. This dictionary is shown by the “�” symbol
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Fig. 1. Basis design paradigms for matching pursuit. (a) Old
paradigm based on initial computational restrictions. (b)New
paradigm enabled by dictionary approximation.

in the figure. Our algorithm is then employed to generate a second
dictionary, as shown by “�”. The second dictionary approximates
the first, and is thus capable of similar coding efficiency. How-
ever, the second dictionary is built to accommodate an efficient
2-stage implementation introduced in [4], and in this way com-
plexity is substantially reduced. A second advantage is that the
approximation quality may be reduced in exchange for complex-
ity gains. This results in a systematic tradeoff between thecoding
efficiency and complexity of the encoder.

The paper is organized as follows. Section 2 reviews match-
ing pursuit residual encoding and introduces a fast 2-stagefiltering
structure on which our approximation algorithm is built. Dictio-
nary approximation is developed in Section 3. Coding results are
presented in Section 4, and conclusions are summarized in Sec-
tion 5.

2. MATCHING PURSUIT VIDEO CODING

As in previous papers, we will use matching pursuit to encodethe
motion residual signals in a hybrid video coding system. Matching
pursuit decomposes motion residual

��
into a weighted combina-

tion of basis functions calledatoms over multiple stages. At each
stage, a single basis function

���
is chosen from an overcomplete

dictionary� in order to best represent the remaining signal energy
in

��
. An energy pre-search first identifies a local area in which to

place the atom. The exact basis and weighting value� � are then
chosen by an exhaustive local inner product search. That is,each��� 	 � is centered at each location
� � 
 � in the local region and
the location and basis are chosen which maximize modulus� �:

� � � � ��� � �� �� �� �� � �
Here

��� is the remaining energy after� stages, with
��� � ��

. After
each atom is found, a modulus quantizer� 
�� is applied and the
quantized atom is subtracted from a working copy of the residual
image: ��� � ����� � � 
� �� �� �� �� �� ��
This is called the “atom update” step. After the current atomhas
been subtracted, the remaining energy is then passed on to the next
atom search stage. After� atoms have been found, the motion
residual signal may be approximated as:



��  !"
�#� � 
� ��

�� �� �� �� ��

The decoder reconstructs the residual by decoding the atom pa-
rameters and summing the atoms as above. This result is addedto
the motion prediction image to form the reconstructed frame.

The complexity of the encoder is mostly due to the exhaustive
local inner product search. One way to reduce this complexity is
to base the dictionary on a computable structure such as separa-
ble 2-D functions [1][6]. Further complexity reductions may be
achieved if the separable 2-D dictionary can be realized as asuc-
cessive application of short-kernal filters [3][5]. A more elaborate
dictionary implementation scheme which accomodates nonsepara-
ble functions was introduced by Redmill, et.al. [4]. We willnow
review this work in detail.

Suppose each function in a target dictionary� is constructed
as a weighted summation of functions from a simpler elementary
dictionary$ . It then becomes possible to compute the desired tar-
get inner products as weighted summations of the elementaryinner
products. For example, if

�� � � % � �& � ' %( �&(, then

� ��� � �� � � � % � � ��� � �& � � ' %( � ��� � �&( � (1)

More generally, the inner products needed for matching pursuit
decomposition are computed using the 2-stage filtering structure
shown in Figure 2. For each atom stage�, the inner products be-
tween signal

��� and the required
� � 
 � positional translates of the
elementary functions

�&) 	 $ are first computed. This produces*
elementary inner product buffers+) 
� � 
 �. Weighted combi-

nations of these elementary inner products are then used to form,
target inner product buffers-. 
� � 
 �. These represent the inner

products between
��� and the positional translates of each target

dictionary function
��. . The largest inner product among all the-. 
� � 
 � is then used to select the atom to code for stage�.

The efficiency of this two-stage structure depends on addi-
tional details which we must omit due to space limitations. For
these, the interested reader is referred to [4]. To motivateour cur-
rent method, we rely on two main conclusions from that work:

1. To use the efficient structure of Figure 2,� must be de-
signed so that each

�. 	 � is a weighted combination of
functions from a simpler dictionary$ .

2. Further complexity reduction is achieved using adepen-
dency technique. Here dictionary� is an ordered set,/�. � 0 �1 2 2 2 , 3

, and each
�. is constructed as a weighted combi-

nation of earlier targets
�.4 � 0 5 6 0 and functions from$ .

The advantage of dependency is that values in-.4 
� � 
 � with 05 60 are recycled for use in the later computation of-. 
� � 
 �. For ex-
ample, Redmill’s dictionary builds each target inner product -. 
� � 
 �
from one previously computed target inner product-.4 
� � 
 � and
one or two elementary inner products. The target inner products
are thus built progressively at low computational cost. Further-
more, nonseparable target functions may be efficiently built in this
way even if the elementary dictionary is separable.

3. DICTIONARY APPROXIMATION

Consider an arbitrary initial dictionary�� � / �� �� �.� � 0 � 1 2 2 2 , 3
which has been designed without encoder complexity constraints.
Suppose�� has in some way been optimized for coding efficiency.
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Fig. 2. A two-stage filtering structure used by Redmill, et.al., for
efficient implementation of a nonseparable dictionary.

We wish to generate approximations of�� which have similar cod-
ing efficiency, but have reduced complexity encoder implementa-
tions. We now show a method for generating a series of dictio-
naries�7 � /�� �7 �.� � 0 � 1 2 2 2 , 3, each of which approximates��
to some quality index8 . Each index8 has an associated target
distortion9 
8 � which is set by the user to control the quality of
the approximation. Further,�7 is designed to allow an efficient
2-stage implementation using the structure proposed in [4].

To generate�7 , we apply the matching pursuit algorithm itself
in a novel way. Each

�� �� �.� is to be approximated as a summation of
simpler elements called “construction atoms.” For a given0, each
construction atom: has an associated weight% �; �.� and a unit
norm basis shape

�< �; �.�, which is selected from an appropriately
defined construction dictionary=.. We use matching pursuit to
decompose

�� �� �.� on=. . This produces a set of construction atoms>. which approximate
�� �� �.� to quality index8 as:�� �7 �.� � "

;?@A % �; �.� �< �; �.� (2)

By expressing each original target
�� �� �.� as a summation of simpler

elements, the complexity advantages discussed in Section 2may
be exploited. Specifically, the collection/>. � 0 � 1 2 2 2 , 3

is used
to define the interconnect equations for a fast 2-stage matching
pursuit encoder based on Figure 2.

A special dependency structure was built into the dictionary of
Redmill, et.al. [4] in order to further reduce complexity. We build a
similar structure into our approximated dictionary by constructing=. in a special way. Consider the original dictionary functions�� �� �.� to be ordered by index0, with the approximations generated
sequentially. For the first target with0 � 1

, we define=. to be
some pre-designed elementary dictionary$ . For the later targets,=. is defined as:

=. � $ B / �� �7 �.4 � � 0 5 6 03 (3)

Later targets are thus constructed from the approximationsof ear-
lier targets. This allows inner product computation to be efficiently
recycled in the 2-stage encoder implementation.

The generation algorithm decomposes each
�� �� �.� on the ap-

propriate dictionary=. . Construction atoms are added until the
following distortion criterion is met:CC�� �7 �.� � �� �� �.� CC( D 9 
8 � (4)

In this way,9 
8 � controls the approximation quality. A smaller
value of9 
8 � results in a higher quality approximation. However,
this requires additional construction atoms, each of whichadds
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Fig. 3. A summary of the generation algorithm.

complexity to the interconnect equations shown in Figure 2,and
hence to the final 2-stage implementation. There is thus a tradeoff
between the quality of the approximation and the complexityof
the resulting video encoder.

The dictionary approximation algorithm is summarized in Fig-
ure 3. Additional techniques are used to improve on this algo-
rithm [8]. For example, the complexity gains associated with de-
pendency are a function of the order in which the

�� �� �.� are ap-
proximated. We employ a heuristic ordering algorithm whichap-
proximately orders these functions by size. Functions withlarge
extent are placed late in the order, which allows them to be ef-
ficiently constructed from previously approximated functions of
smaller extent. Complexity is further reduced by using orthogonal
matching pursuit [7] in the generation algorithm. This reduces the
average number of construction atoms required to achieve a given
target distortion9 
8 �, and hence reduces the complexity of the
final 2-stage implementation. Finally, it has been observedthat
similar target functions in�� may produce identical approxima-
tions in�7 . Such duplication is common when9 
8 � is large and
each target is built from only a few construction atoms. We add
a natural merging step to eliminate these duplicates in the final 2-
stage implementation. The dictionary is in this way pruned during
the approximation process, and complexity is further reduced.

As a final note, our elementary dictionary$ consists of 16
separable 2-D functions which approximate Gaussians. We use a
factorized implementation similar to the one given in [5] toeffi-
ciently compute the elementary inner products.

4. RESULTS

To test the method, we generate approximations of two differ-
ent original dictionaries with varying9 
8 �, and we implement
each resulting dictionary in an efficient 2-stage matching pursuit
encoder based on the structure of Figure 2. Each resulting en-
coder is used to code sequences from the standard MPEG-4 test
set [2]. Average coding efficiency (Y-PSNR) and encoder com-
plexity (ops/frame) are recorded for each combination of sequence,
original dictionary, and approximation distortion level9 
8 �. The
two original dictionaries are pictured in Figure 4. Figure 4(a)
shows the separable 2-D Gabor dictionary used in our previous
work [1][2]. We refer to this as the “std” dictionary, and we note
that it may be implemented efficiently using separable 2-D filter-
ing [1]. Figure 4(b) shows a set of Gabor functions rotated atmul-
tiples of 30 degrees which are added to the “std” set to produce a
second dictionary which we call “h30”.

Figure 5 shows two sample dictionary functions approximated
to various9 
8 �. The first column shows the original target func-
tions, and the remaining columns show the approximated func-

(a) (b)
Fig. 4. (a) The separable 2-D Gabor dictionary, “std”. (b) Oriented
Gabor functions added to form the “h30” dictionary.
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Fig. 5. Sample approximated functions from “h30” dictionary.

tions. As seen in the figure,9 
8 � � \ 21 results in an accurate
approximation of the original function. As9 
8 � increases, each
approximated function looks less and less like the original.

Figure 6 shows the coding efficiency and complexity tradeoffs
which result when the Container sequence is coded with various
approximations of the “std” dictionary. Figure 6(a) shows the av-
erage Y-PSNR plotted against9 
8 �. The dotted line shows the
result for the original dictionary without approximation,and so
matches our earlier published results [2]. Note that when9 
8 � is
small, the approximated dictionary performs about as well as the
original. The approximate dictionary may even exceed the origi-
nal in PSNR, since the merging of similar target functions tends to
increase coding efficiency. We see near-original coding efficiency
up to about9 
8 � � \ 2]. At this point, Y-PSNR begins to decrease
rapidly with 9 
8 �. The corresponding complexity plot is shown
in Figure 6(b). As expected, encoder complexity decreases as a
function of 9 
8 �. Note that the largest complexity, correspond-
ing to9 
8 � � \ 21, is already about 7 times less complex than an
efficient 2-D separable implementation of the original “std” dic-
tionary. For9 
8 � � \ 2], the approximated dictionary is about 50
times less complex than the original [8].
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ious distortion levels9 
8 �. (a) Average Y-PSNR for original and
approximated dictionaries. (b) Average complexity of approxi-
mate dictionary implementations.
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Fig. 7. Loss in Y-PSNR due to approximation error plotted di-
rectly against speedup factor. (a) Coding results using the“std”
dictionary. (b) Results using “h30” dictionary.

Approximation tradeoffs for several sequences are compactly
shown in Figure 7. The vertical axis of each plot shows the Y-
PSNR loss due to approximation. In the context of Figure 6(a),
this is computed by subtracting the dotted line from the solid line.
On the horizontal axis of Figure 7, we plot the speedup factordue
to the approximation. This is the complexity of the originaldic-
tionary divided by that of the approximated dictionary. Each data
point represents the encoding of a single test sequence using one of
our approximated dictionaries. Figure 7(a) shows the tradeoffs for
the “std” dictionary. Original dictionary complexity is computed
assuming the efficient 2-D separable implementation in [1].The
plots show that speedup factors above^\ are typically reached in
exchange for PSNR losses of around\ 21 dB. Larger speedup fac-
tors are achieved in exchange for additional PSNR loss. For some
sequences, speedup factors of 100 or more are seen for large9 
8 �.

Figure 7(b) shows the same tradeoffs for the “h30” dictionary.
The plots show that speedup factors greater than_\\ are typically
seen in exchange for PSNR losses between\ 21 and\ 2`. Speedup
factors beyond

1\\\ are also possible, although the associated
PSNR loss varies significantly by sequence. Note that speedup
factors are computed relative to the complexity of the original dic-
tionary, and the original “h30” dictionary is costly to implement.
The oriented functions in “h30” lack a separable implementation,
and so require full 2-D inner product computation. This makes the
original “h30” dictionary about 20 times more complex than “std,”
and so the potential for complexity reduction is larger.

The advantage of the “h30” dictionary is improved visual and
PSNR performance on sequences with diagonal edge content [8].
This is partially illustrated in Figure 8, which compares the trade-
offs between PSNR and complexity for the “h30” and “std” dic-
tionaries. We see that “h30” shows small Y-PSNR gains over
“std” at the same complexity for mild approximation levels,e.g.9 
8 � 6 \ 2_. The curves merge beyond this point, indicating sim-
ilar PSNR/complexity performance. This can be attibuted tothe
fact that when9 
8 � is large, few dictionary functions survive the
pruning process. Approximations of “std” and “h30” tend to be-
come more similar through this process, and so have similar trade-
offs. Note that the Mother and Foreman sequences were selected
because they contain significant diagonal edge content. Forse-
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Fig. 8. Approximation tradeoffs for two sample sequences. Av-
erage Y-PSNR and and complexity are shown for each dictionary
approximated with9 
8 � ranging from 0.1 to 0.8.

quences like Container and Coast which lack diagonal edges,the
“h30” dictionary shows no advantage over “std” [8].

5. CONCLUSION

In this work, we developed a method for generating approxima-
tions of arbitrary dictionaries with fast 2-stage implementations.
For a given dictionary, this allows coding efficiency to be traded
for encoder complexity in a systematic way. It also enables anew
dictionary design paradigm which is free from initial restrictions
based on complexity concerns. We applied the method to the 2-D
separable “std” dictionary, and showed that complexity reduction
factors between̂\ anda\ are typical in exchange for small reduc-
tions in coding efficiency. We showed that larger gains are possible
when the method is applied to the “h30” dictionary which doesnot
have an efficient computational structure. For this dictionary, com-
plexity reduction factors up to 1000 were shown in exchange for
small losses in Y-PSNR. Dictionary approximation may thus be
employed to automatically generate fast, approximate implemen-
tations of arbitrary matching pursuit dictionaries.
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