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ABSTRACT

Previously, we demonstrated an efficient video codec based o
overcomplete signal decomposition using matching pwsiitc-
tionary design is an important issue for this system, anersth
have shown alternate dictionaries which lead to eitherrgpdifi-
ciency improvements or reduced encoder complexity. Irvitoik,

we introduce for the first time a design methodology which in-
corporates both coding efficiency and complexity in a systen
way. The key to our new method is an algorithm which takes an
arbitrary 2-D dictionary and generates approximationshefdic-
tionary which have fast 2-stage implementations. By varyhe
quality of the approximation, we can explore a systematider

off between the coding efficiency and complexity of the matgh
pursuit video encoder. As a practical result, we show casesev
complexity is reduced by a factor of 500 to 1000 in exchange fo
small coding efficiency losses of around 0.1 dB PSNR.

1. INTRODUCTION

Most video codecs in use today are based on a hybrid motion-
compensated transform structure. The current frame isqiesdd
using motion compensation, and the prediction error resic
coded using a transform, typically the discrete cosinesfam
(DCT). In previous work, we demonstrated that improved ngdi
efficiency may be achieved by replacing the DCT with an over-
complete transform [1]. Both PSNR and visual improvemetrov
standard DCT-based video coders has been shown [2].

Dictionary design is an important topic, affecting both tloe-
ing efficiency and the complexity of the matching pursuitader.
Complexity reduction is desirable, since matching purisuiased
on a potentially expensive local inner product search. Fisrrea-
son, published matching pursuit dictionaries [1][3][4]168 have
typically been based on a complexity-restricted design. of-c
putable structure is initially assumed, for example 2-Dasaple
functions. The dictionary is then designed within thisniegtd set
of possibilities. This design paradigm is shown in Figura)1(

One problem with this design method is that the initial iestr
tions reduce the design space. Even if some “optimal” dgsign
cedure is used within the complexity-restricted set, agbbektsign
may exist outside of the set. As an example, restriction paise
ble 2-D functions is typical [1][3][5][6]. However, diagahedges
and curves are excluded from the resulting dictionary, thsc
then unable to efficiently code such structures. By liftihg ini-
tial restrictions and allowing a dictionary of arbitraryl2func-
tions, coding efficiency may be improved. However, the syl
system may be complex, since it has no computationally effici
way to compute the inner products for matching pursuit.

In this work, we start with an arbitrary 2-D dictionary and de
velop a framework for generating approximations of thatidic
nary which have fast implementations. This enables a neignles
paradigm, as illustrated in Figure 1(b). An initial dictany is
chosen without complexity restrictions, using any desigopti-
mization technique. This dictionary is shown by th& Symbol
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Fig. 1. Basis design paradigms for matching pursuit. (a) Old
paradigm based on initial computational restrictions. N&w
paradigm enabled by dictionary approximation.

in the figure. Our algorithm is then employed to generate arsic
dictionary, as shown bys”. The second dictionary approximates
the first, and is thus capable of similar coding efficiency.wHo
ever, the second dictionary is built to accommodate an efftci
2-stage implementation introduced in [4], and in this wayeo
plexity is substantially reduced. A second advantage it tthe
approximation quality may be reduced in exchange for corple
ity gains. This results in a systematic tradeoff betweerctuing
efficiency and complexity of the encoder.

The paper is organized as follows. Section 2 reviews match-
ing pursuit residual encoding and introduces a fast 2-dttiggng
structure on which our approximation algorithm is built.cfe-
nary approximation is developed in Section 3. Coding resaie
presented in Section 4, and conclusions are summarizedcin Se
tion 5.

2. MATCHING PURSUIT VIDEO CODING

As in previous papers, we will use matching pursuit to endbéee
motion residual signals in a hybrid video coding system. diiiig
pursuit decomposes motion residlfélnto a weighted combina-
tion of basis functions calleatoms over multiple stages. At each
stage, a single basis functioiig is chosen from an overcomplete
dictionaryT in order to best represent the remaining signal energy
in f An energy pre-search first identifies a local area in which to
place the atom. The exact basis and weighting valuare then
chosen by an exhaustive local inner product search. Thaaéh)

t, € T is centered at each locatigm, y) in the local region and
the location and basis are chosen which maximize mogytus

pi = (Firttr.0)

Hereﬁ is the remaining energy aftérstages, Wit% = f After
each atom is found, a modulus quantizg(:) is applied and the
guantized atom is subtracted from a working copy of the resid

image: L. .

fi = fi-1 — Qi) t(y,0,y);
This is called the “atom update” step. After the current atan
been subtracted, the remaining energy is then passed omexh
atom search stage. Aftéd¥ atoms have been found, the motion
residual signal may be approximated as:



N
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The decoder reconstructs the residual by decoding the atom p
rameters and summing the atoms as above. This result is &alded
the motion prediction image to form the reconstructed frame

The complexity of the encoder is mostly due to the exhaustive
local inner product search. One way to reduce this complésit
to base the dictionary on a computable structure such asassepa
ble 2-D functions [1][6]. Further complexity reductions ynbe
achieved if the separable 2-D dictionary can be realizedsaga
cessive application of short-kernal filters [3][5]. A moilaleorate
dictionary implementation scheme which accomodates mpamnae
ble functions was introduced by Redmill, et.al. [4]. We widw
review this work in detail.

Suppose each function in a target dictiondrys constructed
as a weighted summation of functions from a simpler elenmgnta
dictionary S. It then becomes possible to compute the desired tar-
getinner products as weighted summations of the elemeintagy
products. For example, # = ¢151 + c2382, then

<ﬁ,t-;> =cC <ﬁ, §1> + c2 <f_;,§2>

More generally, the inner products needed for matchinguiurs
decomposition are computed using the 2-stage filteringtire
shown in Figure 2. For each atom stagéhe inner products be-
tween signalﬁ and the requiredz, y) positional translates of the
elementary functiong, € S are first computed. This produces
A elementary inner product buffeis, (z,y). Weighted combi-
nations of these elementary inner products are then usemro f
B target inner product buffers,(x,y). These represent the inner
products betweerﬁ and the positional translates of each target
dictionary function,. The largest inner product among all the
v (z,y) is then used to select the atom to code for stage

The efficiency of this two-stage structure depends on addi-
tional details which we must omit due to space limitationgr F
these, the interested reader is referred to [4]. To motivatecur-
rent method, we rely on two main conclusions from that work:

@)

1. To use the efficient structure of Figure 2, must be de-
signed so that each, € T is a weighted combination of
functions from a simpler dictionar.

. Further complexity reduction is achieved usinglepen-
dency technique. Here dictionaf¥ is an ordered se{t,, b=
1... B}, and each, is constructed as a weighted combi-
nation of earlier targets,, b’ < b and functions fronf.

The advantage of dependency is that valuesit, y) with b’ <

b are recycled for use in the later computatiorvgfz, y). For ex-
ample, Redmill's dictionary builds each target inner pretdiy (z, y)
from one previously computed target inner produgt(z, y) and
one or two elementary inner products. The target inner prisdu
are thus built progressively at low computational cost. tier
more, nonseparable target functions may be efficientlyt buihis
way even if the elementary dictionary is separable.

3. DICTIONARY APPROXIMATION

Consider an arbitrary initial dictionarfy = {E'(O,b), b=1...B}
which has been designed without encoder complexity cansdra
Supposdp has in some way been optimized for coding efficiency.
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Fig. 2. A two-stage filtering structure used by Redmill, et.alr, fo
efficient implementation of a honseparable dictionary.

We wish to generate approximationsiefwhich have similar cod-
ing efficiency, but have reduced complexity encoder impletae
tions. We now show a method for generating a series of dictio-
nariesT, = {E'(q,b),b: 1...B}, each of which approximatég

to some quality index;. Each indexg has an associated target
distortion D(gq) which is set by the user to control the quality of
the approximation. Furthef;, is designed to allow an efficient
2-stage implementation using the structure proposed in [4]

To generatdy,, we apply the matching pursuit algorithm itself
in a novel way. Eacﬁ(o,b) is to be approximated as a summation of
simpler elements called “construction atoms.” For a gike@ach
construction atom) has an associated weight, ;) and a unit
norm basis shapg, »), which is selected from an appropriately
defined construction dictionari,. We use matching pursuit to
decomposé ) on R,. This produces a set of construction atoms

¥, which approximaté’(oyb) to quality indexq as:

tat) = Y CwmTwn
PET
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By expressing each original tarq?@@,b) as a summation of simpler
elements, the complexity advantages discussed in Sectinay?2
be exploited. Specifically, the collectiqi@,,b = 1... B} isused
to define the interconnect equations for a fast 2-stage nmgtch
pursuit encoder based on Figure 2.

A special dependency structure was built into the dictigrdr
Redmill, et.al. [4] in order to further reduce complexitye\iild a
similar structure into our approximated dictionary by domnsting
Ry in a special way. Consider the original dictionary functon
t"(o,b) to be ordered by indek with the approximations generated
sequentially. For the first target with= 1, we defineR; to be
some pre-designed elementary diction&ryFor the later targets,
Ry, is defined as:

Ry = SU {tqpy,b <b} (3)
Later targets are thus constructed from the approximatbesir-
lier targets. This allows inner product computation to besiehtly
recycled in the 2-stage encoder implementation.

The generation algorithm decomposes eé'@[g) on the ap-
propriate dictionaryR,. Construction atoms are added until the
following distortion criterion is met:

|#0) — oy ||” < D(@) (4)

In this way, D(q) controls the approximation quality. A smaller
value of D(q) results in a higher quality approximation. However,
this requires additional construction atoms, each of whidls



Initialization:

AssumeS, Tp, andD(q) are given. Sefy is initially empty.
Approximation:

Forb =1to B;

. Decompose?(o,b) using matching pursuit with dictionar
Ry, as defined in Equation (3). Take each coded atom to
construction atomp in an approximation of the form given
in Equation (2). Stop when the constructed approximation
E'(q,b) satisfies distortion criterion (4).

o UpdateTy = Tg U {5}
Nextb;
Fig. 3. A summary of the generation algorithm.

complexity to the interconnect equations shown in Figurar]
hence to the final 2-stage implementation. There is thusdadfa
between the quality of the approximation and the complesfty
the resulting video encoder.

The dictionary approximation algorithm is summarized ig-Fi
ure 3. Additional techniques are used to improve on this-algo
rithm [8]. For example, the complexity gains associatedwlie-
pendency are a function of the order in which ff@@;b) are ap-
proximated. We employ a heuristic ordering algorithm whagh
proximately orders these functions by size. Functions Veithe
extent are placed late in the order, which allows them to be ef
ficiently constructed from previously approximated fuoo8 of
smaller extent. Complexity is further reduced by using agtnal
matching pursuit [7] in the generation algorithm. This reglithe
average number of construction atoms required to achieweea g
target distortionD(q), and hence reduces the complexity of the
final 2-stage implementation. Finally, it has been obsetted
similar target functions iffy, may produce identical approxima-
tions inT,. Such duplication is common when(q) is large and
each target is built from only a few construction atoms. We ad
a natural merging step to eliminate these duplicates in tta -
stage implementation. The dictionary is in this way prunedrd)
the approximation process, and complexity is further reduc

As a final note, our elementary dictionay consists of 16
separable 2-D functions which approximate Gaussians. \Weaus
factorized implementation similar to the one given in [5]effi-
ciently compute the elementary inner products.

4. RESULTS

To test the method, we generate approximations of two differ
ent original dictionaries with varyind(q), and we implement
each resulting dictionary in an efficient 2-stage matchingspit

(a) (b)
Fig. 4. (a) The separable 2-D Gabor dictionary, “std”. (b) Oriente
Gabor functions added to form the “h30” dictionary.
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Fig. 5. Sample approximated functions from “h30” dictionary.
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tions. As seen in the figurd)(q) = 0.1 results in an accurate
approximation of the original function. AB(q) increases, each
approximated function looks less and less like the original
Figure 6 shows the coding efficiency and complexity tradeoff
which result when the Container sequence is coded with wario
approximations of the “std” dictionary. Figure 6(a) shoWwe -
erage Y-PSNR plotted againsi(q). The dotted line shows the
result for the original dictionary without approximatioand so
matches our earlier published results [2]. Note that wb¥q) is
small, the approximated dictionary performs about as wethe
original. The approximate dictionary may even exceed thgi-or
nal in PSNR, since the merging of similar target functiomslteto
increase coding efficiency. We see near-original codingieffcy
up to aboutD(q) = 0.6. At this point, Y-PSNR begins to decrease
rapidly with D(q). The corresponding complexity plot is shown
in Figure 6(b). As expected, encoder complexity decreases a
function of D(q). Note that the largest complexity, correspond-
ing to D(g) = 0.1, is already about 7 times less complex than an
efficient 2-D separable implementation of the original "stict-
tionary. ForD(q) = 0.6, the approximated dictionary is about 50

encoder based on the structure of Figure 2. Each resulting en fimes less complex than the original [8].
coder is used to code sequences from the standard MPEG-4 test

set [2]. Average coding efficiency (Y-PSNR) and encoder com-
plexity (ops/frame) are recorded for each combination qiisece,
original dictionary, and approximation distortion leve(q). The
two original dictionaries are pictured in Figure 4. Figur@y

shows the separable 2-D Gabor dictionary used in our previou (@) Zorss

work [1][2]. We refer to this as the “std” dictionary, and weta
that it may be implemented efficiently using separable 2-@rfil
ing [1]. Figure 4(b) shows a set of Gabor functions rotatemalt
tiples of 30 degrees which are added to the “std” set to p@duc
second dictionary which we call “h30".

Figure 5 shows two sample dictionary functions approximhate
to variousD(q). The first column shows the original target func-
tions, and the remaining columns show the approximated-func
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Fig. 6. Encoding result for “std” dictionary approximated to var-
ious distortion leveldD(q). (a) Average Y-PSNR for original and
approximated dictionaries. (b) Average complexity of appr
mate dictionary implementations.
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Fig. 7. Loss in Y-PSNR due to approximation error plotted di-
rectly against speedup factor. (a) Coding results using'sto®
dictionary. (b) Results using “h30” dictionary.

Approximation tradeoffs for several sequences are corpact
shown in Figure 7. The vertical axis of each plot shows the Y-
PSNR loss due to approximation. In the context of Figure,6(a)
this is computed by subtracting the dotted line from thedslitie.

On the horizontal axis of Figure 7, we plot the speedup fadter
to the approximation. This is the complexity of the originiad-
tionary divided by that of the approximated dictionary. Eaata
point represents the encoding of a single test sequenag aisaof
our approximated dictionaries. Figure 7(a) shows the tisiéor
the “std” dictionary. Original dictionary complexity is ogputed
assuming the efficient 2-D separable implementation in THe
plots show that speedup factors abd¥eare typically reached in
exchange for PSNR losses of around dB. Larger speedup fac-
tors are achieved in exchange for additional PSNR loss. d¢foes
sequences, speedup factors of 100 or more are seen folbggge

Figure 7(b) shows the same tradeoffs for the “h30” dictignar
The plots show that speedup factors greater @itdnare typically
seen in exchange for PSNR losses betw@érand0.2. Speedup
factors beyondl000 are also possible, although the associated
PSNR loss varies significantly by sequence. Note that speedu
factors are computed relative to the complexity of the oagdic-
tionary, and the original “h30” dictionary is costly to ingphent.
The oriented functions in “h30” lack a separable implemgoia
and so require full 2-D inner product computation. This nsatke
original “h30” dictionary about 20 times more complex thatd;”
and so the potential for complexity reduction is larger.

The advantage of the “h30” dictionary is improved visual and
PSNR performance on sequences with diagonal edge conient [8
This is partially illustrated in Figure 8, which compares thade-
offs between PSNR and complexity for the “h30” and “std” dic-
tionaries. We see that “h30” shows small Y-PSNR gains over
“std” at the same complexity for mild approximation levedsg.
D(q) < 0.5. The curves merge beyond this point, indicating sim-
ilar PSNR/complexity performance. This can be attibutethto
fact that whenD(q) is large, few dictionary functions survive the
pruning process. Approximations of “std” and “h30” tend ® b
come more similar through this process, and so have simildet
offs. Note that the Mother and Foreman sequences were aglect
because they contain significant diagonal edge content.sé&or

Mother 24 kbit/s Foreman 48 kbit/s

35.6 . x  h30 31 x  h30
- O std O std
1 2 3 4 5 6 2 4 6 8 10 12
Ops/frame x10" Ops/frame x10"

Fig. 8. Approximation tradeoffs for two sample sequences. Av-
erage Y-PSNR and and complexity are shown for each dictyonar
approximated withD(g) ranging from 0.1 to 0.8.

guences like Container and Coast which lack diagonal edges,
“h30” dictionary shows no advantage over “std” [8].

5. CONCLUSION

In this work, we developed a method for generating approxima
tions of arbitrary dictionaries with fast 2-stage implernzions.
For a given dictionary, this allows coding efficiency to baded
for encoder complexity in a systematic way. It also enablesva
dictionary design paradigm which is free from initial réstions
based on complexity concerns. We applied the method to the 2-
separable “std” dictionary, and showed that complexityuotidn
factors betweern0 and80 are typical in exchange for small reduc-
tions in coding efficiency. We showed that larger gains assiie
when the method is applied to the “h30” dictionary which doet
have an efficient computational structure. For this dicigncom-
plexity reduction factors up to 1000 were shown in excharmge f
small losses in Y-PSNR. Dictionary approximation may thes b
employed to automatically generate fast, approximateemph-
tations of arbitrary matching pursuit dictionaries.
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