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Abstract—Phase shifted sinusoidal patterns have proven to be
effective in structured light systems, which typically consist of a
camera and projector. They offer low decoding complexity, require
as few as three projection frames per reconstruction, and are well
suited for capturing dynamic scenes. In these systems, depth is re-
constructed by determining the phase projected onto each pixel in
the camera and establishing correspondences between camera and
projector pixels. Typically, multiple periods are projected within
the set of sinusoidal patterns, thus requiring phase unwrapping
on the phase image before correspondences can be established. A
second camera can be added to the structured light system to help
with phase unwrapping. In this work, we present two consistent
phase unwrapping methods for two-camera stereo structured light
systems. The first method enforces viewpoint consistency by phase
unwrapping in the projector domain. Loopy belief propagation is
run over the graph of projector pixels to select pixel correspon-
dences between the left and right camera that align in 3-D space
and are spatially smooth in each 2-D image. The secondmethod en-
forces temporal consistency by unwrapping across space and time.
We combine a quality guided phase unwrapping approach with
absolute phase estimates from the stereo cameras to solve for the
absolute phase of connected regions. We present results for both
methods to show their effectiveness on real world scenes.

Index Terms—Depth reconstruction, dynamic scene capture,
phase unwrapping, stereo, structured light (SL).

I. INTRODUCTION

A significant amount of work has been focused on systems
that create accurate 3-D models of real world scenes;

these include laser scanners, stereo-camera systems, and struc-
tured light systems [1]. Some of the methods are not well suited
for the task of capturing 3-D models of dynamic scenes. Laser
scanners, for example, have proven to be expensive and do not
have the spatial or temporal resolution to capture the 3-D depth
of a dynamic scene. Stereo-camera based approaches generate
3-D models of a scene by stereo matching across pairs, or
multiple pairs, of cameras [2].
An alternative method for 3-D reconstruction of scenes is

structured light (SL). SL systems replace one of the cameras in
the traditional two-camera stereo method with a projector which
projects patterns that uniquely identify points in the scene. The
remaining camera identifies the pattern present at each observed
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pixel from which correspondences between the camera and pro-
jector pixels are established. From these correspondences, a 3-D
model is generated through triangulation [3].
There has been extensive research in designing effective

SL illumination patterns that uniquely identify points within
the illuminated scene [4]–[6]. Examples of pattern generation
methods include temporal and spatial coding of projection
patterns or “viewpoint-coded structured light” [7]–[9]. For
capturing a dynamic scene using structured light, it is desirable
to use illumination patterns that maximize the quality and
resolution of each reconstruction while simultaneously mini-
mizing the number of projected frames in the pattern, in order
to maximize the temporal update rate of the scene [6].
An important class of projection patterns in SL systems is

phase-shifted sinusoids. These patterns are robust to depth of
field effects and are simple to decode. In the common setup,
three sinusoidal images, each phase shifted by , are sequen-
tially projected onto the scene. The three observed intensities of
a given pixel during the pattern projection are used to determine
the wrapped phase of the corresponding pixel in the projector.
Performing this calculation on all points in the camera image al-
lows a phase image to be generated from which the scene can be
reconstructed [3], [10], [11]. In these systems, it is common to
project multiple periods of the sinusoids across the screen. This
reduces the number of unique phase values that must be iden-
tified, thereby making the decoding process less susceptible to
noise. At the same time, for an period projection there is an
-fold ambiguity in finding the corresponding point in the pro-

jector’s image because only the wrapped phase of each pixel can
be determined. This ambiguity is removed through the image
phase unwrapping process [12].
In this work, we present two phase unwrapping methods in

a stereo structured light system to ensure viewpoint or tem-
poral consistency. The first method ensures viewpoint consis-
tency when unwrapping images in the stereo SL system [13],
and the second method ensures temporal consistency while un-
wrapping each camera over time [14].
In our first method, the phase images for both the left and

right cameras in the stereo SL system are simultaneously un-
wrapped. Rather than unwrapping over the phase image of each
camera individually, we unwrap by processing the pixels in the
projector. There are several potential advantages to such a pro-
jector domain phase unwrapping approach. First, operating on
the projector pixels allows us to assign an absolute phase to
corresponding pairs of pixels in the cameras. This ensures that
the phase images are unwrapped consistently between camera
views, and that the triangulated points from each camera are in
agreement. Second, in a projector centric approach, the phase

1932-4553/$31.00 © 2012 IEEE



412 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 5, SEPTEMBER 2012

unwrapping algorithm only needs to be run once regardless of
the number of cameras in the system. As such, it is likely to 1)
be more computationally efficient, and 2) result in more consis-
tent solutions with fewer discrepancies across cameras. Third,
the computational complexity for a projector based solution is
proportional to the number of projector pixels rather than the
number of camera pixels, as is true in traditional camera cen-
tric reconstruction. Since from a technological point of view,
camera resolution is likely to increase at a much faster rate than
projector resolution, projector centric solutions are likely to be
more computationally efficient.
In our second method, we unwrap temporally across multiple

consecutive phase images from a single camera. Most existing
SL systems for dynamic scenes process the captured data one
frame at a time with no guarantee of temporal consistency in the
unwrapped images. This could result in temporal discontinuities
and artifacts when viewing the reconstructed point cloud over
time. It is conceivable to both remove these temporal artifacts
and improve phase unwrapping accuracy by unwrapping across
time as well as space [15]. Thus, we propose merging stereo
phase unwrapping with 3-D phase unwrapping to arrive at tem-
porally consistent absolute phase volumes. By 3-D, we refer to

rather than the commonly used , where
represents time.
The outline of this paper is as follows. Section II provides

background for our phase unwrapping methods. Section III re-
views the basic stereo phase unwrapping process. In Section IV,
we present our proposed viewpoint consistent phase unwrap-
ping method. Section V provides an overview of the 3-D
phase unwrapping method [15], and Section VI presents our
proposed temporally consistent phase unwrapping method. In
Section VII, we describe the experimental setup along with
results for both methods. Section VIII provides a comparison
of our methods to related works, and Section IX is conclusions.

II. BACKGROUND

Two-dimensional phase unwrapping has been extensively
studied in the signal processing literature [16]–[19]. In partic-
ular, the problem of phase unwrapping in sinusoidal projection
systems has been extensively explored [12], [17], [20]–[22].
The approaches to phase unwrapping in sinusoidal systems
can be classified into three categories: temporal, period coded,
and spatial phase unwrapping methods. Temporal unwrapping
methods project additional patterns to remove the absolute
phase ambiguity from the phase shifted sinusoidal patterns
[23], [24]. In [23], gray coded patterns are projected in addi-
tion to the phase shifted sinusoidal patterns. The gray code
patterns encode the period of each projected pixel so that the
absolute phase of each pixel can be directly determined. In
another approach by Huntley and Saldner, the frequency of
the projected sinusoidal pattern is increased as each pattern is
projected [24]. The absolute phase of each pixel is then deter-
mined by counting the number of period crossings in each
pixel’s temporal sequence. In their experiments, 17 patterns are
projected for a single reconstruction. Temporal methods allow
for the absolute phase of each pixel to be determined at the cost
of significantly increasing the number of projected patterns.
Unless very high-speed cameras are used, temporal-based

projection methods are not suitable for dynamic scene capture.
Period coded methods embed the period information within the
same patterns as the phase shifted sinusoids. Liu et al. add a
single period sinusoid to the high-frequency sinusoidal pattern
[25]. By projecting five phase shifted versions of the summed
sinusoidal patterns, the phase of both the high- and low-fre-
quency sinusoid can be determined at each point. The two
phase estimates can then be used to generate the absolute phase
of each pixel. Once again, this comes at the expense of using
additional patterns. The final approach to phase unwrapping
is spatial unwrapping. In spatial unwrapping, the unwrapped
phase of each pixel is determined by locally summing phase
values along paths within the 2-D image. Unlike temporal
and phase coded methods, spatial unwrapping methods do not
always provide absolute phase results. It is often the case that
the unwrapped results have an additional unknown offset,
where is an integer value. It is necessary to determine the
absolute phase in order to calculate the true depth of an object.
To generate accurate unwrapped results, a number of assump-

tions are made about the content of the scene during the spatial
phase unwrapping process in sinusoidal SL systems [20], [21].
First, the scene is assumed to contain a single continuous object
in space, i.e., all objects in the scene are connected together.
Second, phase unwrapping via traditional spatial methods re-
quires most neighboring points to have phase differences that
are smaller than . Without this assumption, the true phase
differences cannot easily be determined because of the peri-
odic nature of the phase values. This typically restricts the types
of scenes that can successfully be reconstructed. For instance,
scenes with multiple disconnected objects or large depth discon-
tinuities cannot be unwrapped with spatial phase unwrapping
techniques alone.
As mentioned, spatial phase unwrapping allows for the

recovery of the relative phase between pixels, but it does not
directly anchor the phase of each pixel to an absolute value.
Without absolute phase, there remains a constant unknown
offset in the correspondence between camera pixels and pro-
jector columns. A variety of techniques have been developed
to determine this constant in order to recover absolute depth
via triangulation. In [11], Zhang and Yau embed a small cross
in the projected pattern to serve as a reference position with a
known absolute phase. Once detected, all the remaining points
are unwrapped with respect to the marker in order to determine
the absolute phase of the entire image. The embedded marker
serves as a valid reference point, but it can be difficult to
determine the position of the marker if the projected pattern is
out of focus or if there is significant texture within the scene.
While traditional SL systems consist of a single camera and

projector, several SL systems with multiple cameras recently
have been proposed [11], [26], [27]. In addition to using a
marker to solve for absolute phase, Zhang and Yau also use two
cameras in order to increase the reconstruction coverage of a
scene [11]. With the absolute phase recovered, the reconstruc-
tions from the two camera views can be accurately merged. The
work by Han and Huang uses a pair of stereo cameras with a si-
nusoidal SL system to achieve accurate stereo matches between
the cameras [26]. They search for correspondences between the
cameras by using absolute unwrapped phase images. By not
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triangulating depths with respect to the projector, their method
does not require projector calibration and is robust to distor-
tions of the sinusoidal patterns caused by the projector. Their
method only works on scenes where there are no large depth
discontinuities, since spatial unwrapping is required. A second
camera can also be added to the single-camera, single-projector
SL system [27] to overcome the phase discontinuity problem
and allow for the reconstruction of scenes with multiple objects.
In doing so, the absolute phase for many points in the scene
can be determined. Specifically, the second camera resolves the
absolute phase ambiguity as follows [27]: for each pixel in the
first camera, the wrapped phase is calculated, and the possible
corresponding locations in the projector are determined. Given
periods in the projected sinusoidal patterns, there are

columns in the projector that could possibly correspond to
the identified camera pixel. These points are triangulated
in 3-D space, and each 3-D point is projected onto the image
plane of the second camera. Each projected pixel’s phase is
then compared to the phase of the pixel in the first camera. The
projected pixel with the closest phase to the reference pixel is
identified as the correspondence. This approach can result in
occasional absolute phase errors due to occlusions, calibration
errors, “false” matches, and scene motion. In [27], the errors
are cleaned up through an energy minimization framework that
uses both data and smoothing cost components.
In a stereo SL system capturing multiple poses of a dy-

namic scene, it is important for the unwrapped images of each
camera at each time to be consistent. We refer to “viewpoint
consistency” as unwrapping left and right camera phase images
such that the corresponding scene points in each phase image
have the same absolute phase. Similarly, we refer to “temporal
consistency” as having consecutively unwrapped phase images
with similar phase values for all corresponding points between
consecutive frames.
Three-dimensional phase unwrapping methods have been ex-

plored in the literature [15], [22], [28]–[46]. Specifically, Su and
Zhang examine the 3-D unwrapping problem for a structured
light application [22]. Despite generating phase images through
Fourier transformation profilometry rather than through shifted
sinusoids, they present several methods for unwrapping a 3-D
phase volume that is generated by stacking consecutive phase
images. In Huntley’s work, a 3-D volume is unwrapped by re-
moving edges between pixels that likely have a discontinuity
[28]. This method is capable of dealing with discontinuities
from noise, but cannot deal with true phase discontinuities.
Our proposed method is a variation of the 3-D phase un-

wrapping algorithm proposed in [15]. Originally developed for
MRI applications, the method assigns a quality measure to each
pixel in the wrapped phase volume based on its local spatio-tem-
poral second difference values. The edges between neighboring
spatio-temporal pixels are also assigned quality measures based
on the quality of the connected pixels. The phase volume is then
unwrapped based on rank ordered edge qualities starting from
the highest to lowest [15]. Since in our setup we assume a stereo
camera pair rather than a single camera, we develop a frame-
work to integrate stereo phase unwrapping with the basic 3-D
phase unwrapping method in [15] in order to determine absolute
phase. Besides providing temporal consistency, this approach is

Fig. 1. Configuration of stereo SL system.

also effective in unwrapping scenes with large depth disconti-
nuities or multiple spatially disjoint objects.

III. OVERVIEW OF STEREO PHASE UNWRAPPING

In stereo phase unwrapping, a second camera is added to the
traditional SL system made of a projector and a single camera.
To maximize the camera coverage of the illuminated scene, the
projector is positioned in between the two cameras, as shown
in Fig. 1. Before processing captured data, the projector and the
pair of cameras must all be calibrated [47].
During capture, the scene is illuminated by three consecutive

phase shifted sinusoidal images, as in [3]. After each camera
captures the scene from its view, a wrapped phase image is com-
puted as

(1)

where represents the intensity of image at image co-
ordinates , and represents the wrapped phase at

. If a scene point is visible in both cameras, the phase
measurement is independent of the viewing direction, except
for saturated image regions corresponding to specular surfaces.
Computing phase via (1) requires the projector to accurately
project true sinusoidal patterns. Since the color processing al-
gorithms of the projector modify the intended projection pat-
terns, we pre-distort the sinusoidal patterns so that the outgoing
patterns are truly sinusoidal. Similar to [3], [10], [11], [27], we
embed our three sinusoidal patterns into the RGB channels of a
DLP projector.
Even though the wrapped phase can be determined at each

pixel of the camera, given periods of sinusoids in the projec-
tion pattern, there is an position ambiguity in each wrapped
phase measurement [27]. To determine the absolute phase of a
pixel, we search for the single absolute phase offset with

, which must be added to its wrapped
phase to obtain its absolute phase. We refer to as the offset
index. Since the possible corresponding positions in the pro-
jector are known, the location of the points can be triangu-
lated, as shown in Fig. 2 [27]. These triangulated points all lie
along the ray coming out of the camera, illustrated as camera
A in Fig. 2. Fig. 3(a) shows an example of the wrapped phase
image of camera A, from Fig. 2, with a pixel of interest iden-
tified by a red dot. The extrinsic relationship between the stereo
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Fig. 2. Triangulation of the possible positions of pixel in camera A.

Fig. 3. (a) Wrapped phase image of the left camera A with the pixel of interest
identified by the red dot . (b) Wrapped phase image for the right camera B in
a system with the possible points projected onto the image.

cameras in Fig. 2, as well as each camera’s intrinsic parame-
ters can be used to project the 3-D positions onto the second
camera’s image plane, as shown in Fig. 3(b). By comparing
the wrapped phase values at the pixel locations to the first
camera’s phase value, the absolute phase of can be estimated.
In Fig. 3(b), it is clear that point B is the corresponding match
to the pixel in Fig. 3(a). Points and map to blank areas of
the scene, and point is projected outside of the image frame.
Even though this approach works for most pixels, in prac-

tice it results in occasional errors. Common causes are occlu-
sions, calibration errors, motion errors, or noise in the calcu-
lated phase. In some cases, the phase of the point in camera
A is closer to an invalid point than to the correct one. In [27],
the stereo unwrapped points are segmented into continuous re-
gions and loopy belief propagation is used to perform an energy
minimization on a cost function to locally smooth segmented
regions.

Fig. 4. Wrapped phase images with epipolar line plotted. Each circle identifies
a pixel with the same wrapped phase as the projector pixel; image from (a)
camera A and (b) camera B.

IV. VIEW CONSISTENT PHASE UNWRAPPING

Our proposed viewpoint consistent method consists of three
steps. First, it is assumed that the cameras and projectors are cal-
ibrated with respect to each other. For each projector pixel, we
determine its epipolar line in the two camera views, as shown
in Fig. 4. By searching along the line in the images, we find
correspondences between the camera views. The set of possible
correspondences between the two views is treated as the set of
labels for that pixel. Second, loopy belief propagation is applied
to minimize an energy function that both quantifies the likeli-
hood of each label and spatially smooths a set of labels [48],
[49]. Finally, the remaining points that are not solved via the
stereo approach are unwrapped with respect to their already un-
wrapped neighboring points. In what follows, we describe each
step in detail.

A. Determining Possible Correspondences

To solve for the absolute phase of both cameras, we process
each pixel in the projected pattern. Given a pixel in the
projected image, the epipolar line corresponding to in
each camera view can be determined, illustrated as the lines
in Fig. 4(a) and (b). In each camera view, we identify the
pixels along the epipolar line with the same phase as ,
identified as and on the epipolar line
in Fig. 4(a) and (b), respectively. Then, the 3-D position of
each of these points is found by triangulating with point , as
illustrated in Fig. 5. All of the triangulated points lie along the
ray out of the projector intersecting .
Once the 3-D position of each possible point is determined,

the distances between all pairs of candidate points in camera A
and B are calculated. For a pair of points corresponding to the
true correspondence, the triangulated 3-D positions are likely to
be near one another, as illustrated by the black dots in Fig. 4.
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Fig. 5. Illustration of the stereo camera geometry used to identify correspon-
dences across camera views.

Therefore, we can estimate the likelihood of a correspondence
by the Euclidean distance between a pair of points.

B. Labeling Via Loopy Belief Propagation

After the set of possible correspondences and their
associated likelihoods are determined for each pixel in the
projector, an energy minimization framework is applied to
determine the best label for each projector pixel. We only
include projector pixels in the graphical model for which there
is at least one pair of correspondences with a distance smaller
than a set threshold. If there are no possible correspondences
within this threshold, the projector pixel is not likely viewable
from both cameras. The set of labels for each projector pixel
is all possible pairwise correspondences between the
detected points in each camera view. Specifically, in
Fig. 4(a) and (b), the set of labels for pixel P are

.
Similar to [27], we minimize a cost function consisting of a

data and smoothing term:

(2)

where represents the labeling set for the pixels in the pro-
jector. The data component of the cost function comes from the
likelihood of the correspondence as determined by the distance
between the points in 3-D space:

(3)
where denotes the label of a pixel within the projector
image corresponding to a pixel in camera A and in
camera B, is a threshold to limit the penalty from occlusions,
and denotes the 3-D location of the labeled point .
The smoothing component is chosen to enforce a solution that
minimizes large discontinuities within the scene. In most SL
systems, the depth of the scene is assumed to vary slowly. This
means that neighboring pixels within the camera image should
have similar depths, and thus similar phase values. Since our
method operates on the projector pixels, the projector pixels
are assumed to vary smoothly. The basic intuition is that if two
neighboring pixels in the projector illuminate the smooth scene
surface, the two pixels in the camera image corresponding to
these points should also be neighbors. This assumption fails

when a scene discontinuity lies between the two examined
pixels in the projector. Therefore, we enforce the following
smoothness term:

(4)

where and are neighboring points in the projector image,
and and are the corresponding points for the pixel
in cameras A and B, respectively. The function is the 2-D
image coordinates of the identified point, and is the set
of four pixels that border . The threshold is set to minimize
the penalty to occlusions.
To determine the label for the projector pixels that minimize

(2), we apply loopy belief propagation [50]. Themessage passed
between two neighboring pixels is constructed as

(5)

where is the label assigned to pixel and
denotes the message passed from to in the iteration.
To minimize the energy cost function, messages are generated
and passed to their neighboring pixels in each iteration. After a
predetermined number of iterations is reached, the final label for
each individual pixel is chosen by summing the final messages
entering that pixel and choosing the label with the lowest cost.
The final labeling is used to assign absolute phase offsets to the
phase images in the two camera views. For each pixel in the
projector, the energy minimization provides the most probable
labeling. The final label of each projector pixel specifies the
location where the projected pixel intersects the image plane of
cameras A and B. Since the absolute phase for each point in the
projected pattern is known, we can assign the identified image
points with the proper absolute phase offset.
Noise in the captured images can lead to small errors in the

decoded phase for each pixel. When searching for possible
points of correspondence along the epipolar lines in the cam-
eras, a small tolerance in the matched phase value is allowed
to account for this noise. Because of this tolerance and the
small errors in the system calibration, it is possible for multiple
projector pixels to map to the same pixel in the camera, or for
a pixel in the camera to have multiple neighboring correspon-
dences in the other camera. For these cases, we keep the match
with the lowest final computed cost. These small errors rarely
lead to errors in our estimated absolute phase offsets since we
only keep the absolute phase offset that is determined from the
match rather than the absolute phase value of the projector’s
pixel.

C. Filling in Missing Phases

Unlike the previous two steps where the processing is done
in the projector domain, in this step, missing phase values
in camera images are filled in. As mentioned previously, our
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Fig. 6. Quality map components. (a) Pixels unwrapped using the approach
of Sections IV-A and IV-B. (b) Density of stereo unwrapped points. (c) Local
derivative measure. (d) Final quality map.

graphical model only provides absolute phase values for pro-
jector pixels that likely have a correspondence. Since not all
projector pixels can be labeled, not all the pixels in the camera
images can be labeled either. Nevertheless, it is possible to
determine the absolute phase of these remaining pixels by
local spatial phase unwrapping with respect to the already
unwrapped points.
Before unwrapping the remaining points, a quality map is

derived for each camera’s phase image. In 2-D spatial phase
unwrapping, quality maps quantify the confidence in unwrap-
ping a local region of an image and are often based on local
rates of change in the phase [19]. Regions of the phase image
with slowly varying phase are unwrapped first since they result
in fewer errors. In our implementation, the quality map is gen-
erated by computing local derivatives in the original wrapped
phase image and also by calculating the density of points with
assigned phases via stereo unwrapping. Fig. 6(a) illustrates
the camera points with phases from the stereo observations
described in this section. Fig. 6(b) illustrates the local density
of absolute pixels from Fig. 6(a), Fig. 6(c) the local derivatives,
and Fig. 6(d) the final quality map. The final quality map is
generated by point wise multiplying the density image and
the local derivative image. Once the quality map is generated,
the points without an assigned absolute phase are unwrapped.
Specifically, each pixel in the quality map is assigned a value
from 0–1, and the quality values are placed into bins that span
0–1. Starting with the highest quality bin, we iterate through
the non-unwrapped pixels in that bin and unwrap camera pixels
that are neighbors to already absolute unwrapped pixels. After
all pixels in a bin are unwrapped, the pixels in the next quality
bin are unwrapped. A list of the remaining unwrapped pixels

is maintained, and the unwrapping process continues until the
list of remaining pixels is empty.

V. OVERVIEW OF THREE-DIMENSIONAL PHASE UNWRAPPING

Multidimensional phase unwrapping has been an area of ac-
tive research for many years, with a substantial body of work
dedicated to unwrapping in two dimensions [15], [19]. Applica-
tions for thesemethods include synthetic aperture radar, medical
imaging, and SL systems [19]. In recent years, many of the two
dimensional techniques have been extended to three and higher
dimensions [15].
The basic idea behind most multidimensional phase unwrap-

ping algorithms is to integrate along paths of neighboring phase
values in order to determine the relative phase between all
pixels. This is a trivial problem when the true phase difference
between neighboring values is less than and noise does not
push the resulting phase values outside this range. Since, in
most applications, this assumption is invalid, phase unwrap-
ping algorithms are designed to minimize the impact of these
erroneous regions.
Most 3-D phase unwrapping algorithms can be classified into

one of three groups: 1) global-error minimization; 2) residue de-
tection; and 3) quality guided methods [19]. Of these basic ap-
proaches, quality guided methods have proven to be both com-
putationally efficient and robust [15]. The basic idea behind
them is to quantify the likelihood that two neighboring pixels
can be correctly unwrapped with respect to each other. An edge
is defined to exist between all neighboring pixels and a mea-
sure of quality is assigned to each edge [15]. If two neighboring
pixels have similar phase values, the quality of that edge is con-
sidered to be high. In contrast, two pixels with greater phase
difference would have a lower quality edge. Although, basic
gradient calculations between pixels have been used to generate
quality maps [19], other methods, such as a second difference
quality map, have been found to be more robust [15].
The second difference value for each pixel in the

phase volume can be computed as

(6)

(7)

(8)

(9)

where , , and represent the horizontal, vertical, and
normal, i.e., temporal, second differences via discrete Lapla-
cians respectively. In addition, represents the wrapped
phase at and is a function that wraps its parameter
to a value within . The ten diagonal second difference
components , in (6) are computed
through all of the diagonal paths in the volume
centered on the pixel of interest. The squared second derivative
identifies pixels where a discontinuity occurs. If there are no
discontinuities, the phase increase should be approximately
linear, resulting in a squared second difference value near zero;
on the other hand, if the squared second difference value is
large, there is a strong likelihood of a discontinuity. Using
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this quality map, it is possible to identify pixels with spatial or
temporal discontinuities.
The quality of a pixel is inversely related to the sum of second

difference values. Once a quality value is assigned to each pixel
in the 3-D phase volume, the quality of each edge is simply
defined as the sum of the quality of each pixel connected to the
edge [15]. The quality of edges determines the order in which
the edges in the volume are unwrapped by sorting them from
highest to lowest.
When an edge is evaluated, the pixels connected to the edge

are unwrapped with respect to one another, forming links in a
chain. Each chain has a pixel that is designated the lead pixel.
When the first link of a chain is created, the lead pixel is defined
as the pixel with the highest quality. As each new pixel is added
to a chain, the new pixel is unwrapped with respect to the con-
nected pixel along the evaluated edge. Each newly added pixel
is then given a phase value relative to the lead pixel in the chain.
When two chains are merged, each pixel in the smaller chain is
assigned a phase relative to the lead pixel in the larger chain
[15]. Chains grow in connected 3-D volumes and their actual
shape is unimportant as long as the phase of each pixel in the
chain is defined with respect to the lead pixel.
While this 3-D algorithm is capable of accurately unwrapping

the phases of all points within a volume, it does not necessarily
result in absolute phase. Since each absolute phase is assigned
to a column of pixels within the sinusoidal pattern, correct tri-
angulation is only possible when the absolute phase is known;
thus, without a method to recover the absolute phase, the 3-D
unwrapping algorithm is useless in the SL system.
Additionally, the algorithm in [15] is only capable of unwrap-

ping scenes with one contiguous, connected region. While this
works in MRI, the application domain in which this algorithm
was originally designed, it is not applicable to depth recovery
for scenes with multiple disjoint objects as it could incorrectly
assign relative phases to each object. This is because in [15]
all edges between pixels with a wrapped phase are unwrapped
with respect to one another regardless of the quality of the edges.
For example, consider a scene with a ball traveling in front of a
flat board. As the ball moves, the pixels that fall along the edge
of the ball and the background receive low quality measures
due to the motion and depth discontinuity. Therefore, the algo-
rithm [15] is likely to assign erroneous phases to those pixels.
However, within the ball, as the local depth is not changing sig-
nificantly, we would expect these pixels to have high quality
edges. Unwrapping the background and ball independently pre-
vents the two regions from being incorrectly unwrapped. As
long as the absolute phase of each region can be determined,
e.g., through stereo phase unwrapping, there is no need to un-
wrap across low quality edges.
The shortcomings of the phase unwrapping algorithm in [15]

are a direct consequence of the fact that it has been developed for
applications in which only a single observation exists for each
phase value. In an application such as MRI, since each point is
only measured or observed once there is no choice but to unwrap
all pixels with respect to one another. However, in an SL system
with a second camera to disambiguate the absolute phase of each
pixel, unwrapping can be restricted to high-quality edges, i.e.,
those edges connecting pixels with similar phase values, thus

Fig. 7. Converting absolute phase differences to probabilities.

reducing the error. In the following section, we exploit this to
develop a method for combining stereo phase unwrapping with
3-D phase unwrapping to overcome some of the shortcomings
of [15].

VI. TEMPORALLY CONSISTENT PHASE UNWRAPPING

In this section, we develop a probabilistic framework for
stereo phase unwrapping in order to augment the functionality
of the 3-D phase unwrapping algorithm of [15] to make it
capable of determining absolute phase.

A. Determining a Pixel’s Absolute Phase Offset Probabilities

As mentioned earlier, the likelihood of a pixel having a spe-
cific absolute phase offset is determined by triangulating the
possible corresponding points between camera A and the pro-
jector, as shown in Fig. 2, projecting these points onto the
second camera’s image, as shown in Fig. 3(b), and comparing
the phases of the projected points to the phase of the orig-
inal pixel in camera A. With pixel’s taking on wrapped phase
values from to , if the original pixel and one of the corre-
sponding projected pixels have a phase difference of 0, they
are likely to be a correct match; likewise, if the pair differ by
then they are unlikely to be a correct match.1 One way to com-
pute the likelihood for each of the possible absolute phase
offsets is to divide the phase difference of the corresponding
pixels by . However, this likelihood measure does not suf-
ficiently penalize large phase differences. Rather, we propose
using a Gaussian function to assign likelihoods to phase differ-
ences, as shown in Fig. 7.
In recovering the absolute phase of each pixel, not all of the
corresponding points necessarily project onto valid regions

in the second image as shown earlier in Fig. 3. Some could fall
on portions of the image where there are no wrapped phase
values, as indicated by dots and in Fig. 3(b), and some
might fall outside the viewable region of the camera, as indi-
cated by dot in Fig. 3(b). We assign and as the proba-
bilities for 3-D points projected outside the boundary and to an
empty “phase-less” region of the image, respectively. Both
and are set greater than zero to ensure we do not penalize
non-overlapping views or occlusions between the cameras too
harshly during unwrapping. We note that some pixels near the

1When calculating the difference between the phase values, the wrapping
function , from (7)–(9), is used to ensure the difference is in the range
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edges of camera A’s image may not be visible from the second
view. For these cases, we assign a probability between and
. Once the probabilities for all of the possible absolute phase

offsets are determined, they are normalized to generate a prob-
ability distribution for the absolute phase offset of pixel in
camera A.

B. Using Pixel Probabilities to Build Chains

In [15], each time a pixel is connected to an existing chain,
or when two chains are combined, the newly added pixels are
unwrapped relative to their linked neighbors. The relative phase
between all pixels in a chain is used to determine the phase dif-
ference between the lead pixel and each pixel in the chain. Since
we only connect “high quality” pixels with reliable edges, all the
pixels in a chain require the same phase offset to convert their
relative unwrapped phase to the absolute phase.2 To determine
the absolute phase of the chain, we search for the single absolute
phase offset , where , which must
be added to the chain’s lead pixel’s wrapped phase to obtain its
absolute phase. We refer to as the offset index for that chain.
If the absolute phase of the lead pixel and the relative phase dif-
ference between the lead pixel and each pixel in the chain are
known, then the absolute phase for each pixel in the chain can
be determined.
The key to ensuring the pixels in the chain have the correct

absolute phase is to use the phase probability distributions of
each pixel in the chain to determine the absolute phase of the
lead pixel. As explained shortly, the basic idea is to use the phase
probability distribution of each newly added pixel in the chain
to update the probability distribution of the offset index for the
lead pixel of the chain. Once the chain is completed, the lead
pixel offset with the highest likelihood is chosen to be the phase
offset for the entire chain.
Similar to the unwrapping method in [15], we start by as-

signing quality values to all of the pixels and edges. The quality
value of an edge is the sum of the quality of the two pixels con-
nected to the edge. Once the quality of all edges has been deter-
mined, the pixels are ranked in quality from highest to lowest.
To start the unwrapping process, the most reliable edge is

identified and the pixels connected to the edge are unwrapped
with respect to each other to form a two pixel chain. We set the
pixel with higher quality as the lead pixel of the chain. We need
to combine the probability distributions of the absolute phase
offset for these two pixels in order to determine the probability
distribution for the absolute phase offset of the leading pixel, or
equivalently the whole chain. One way to do this is to add the
log probabilities of the two pixels. However, this can only be
done after accounting for the phase difference between the two
connected pixels.
To illustrate this, consider two possible chains, each with two

elements. The first chain, shown in Fig. 8(a), has a lead pixel
with a wrapped phase of and a second pixel with a phase
of , where . Local unwrapping would imply
that the two points are from the same sinusoidal period. This

2In essence, we are assuming all the pixels in a chain are part of a contiguous
object in a scene without depth discontinuities.

Fig. 8. Addition of log probabilities for two pixels (a) in the same period and
(b) from different periods.

means that the log3 probability distributions could be directly
added together to refine the offset index state of the lead pixel:

(10)

where is the offset index state of the lead pixel of the chain
given the influence from the connected pixels, is the offset
index state of the lead pixel and is the offset index state of
the second pixel, with offset index .
Now consider the second case, shown in Fig. 8(b), where the

lead pixel has a value of and the second pixel has a value
of , where . For this case, the second pixel is
unwrapped into a period that is outside the period corresponding
to the lead pixel. Specifically, the second pixel has an absolute
phase offset that is greater than the lead pixel, or equivalently
an offset index that is one greater than the lead pixel. There-
fore, when we add the log probabilities to determine the abso-
lute phase distribution for the whole chain, we must shift the
individual pixel probability distributions, as shown in Fig. 8(b):

(11)

The same procedure is used when adding a single pixel to an al-
ready formed chain. As each new pixel is added to the chain, the
absolute phase offset distribution of the new pixel is first prop-
erly shifted to reflect the relative phase difference between the
lead pixel and the new pixel; then the log probabilities for the
new pixel are added to a running sum for the chain. In essence,
this represents the contribution of the phase probability distri-
bution of the new pixel to the overall phase offset of the chain
it joins.
In summing log probabilities as pixels are added, we keep

a count of the number of pixel probabilities added to each
possible offset index. Due to the shifting, each possible offset
index might have a different number of log probabilities
summed together. For example, in Fig. 8(b), the lead, left,
pixel in the chain has two log probabilities summed together for

, shown in blue, but only one for ,
shown in pink. We know the second pixel in the chain cannot
have an offset index of 0, shown in green, since this would
imply the lead pixel to have an offset index of . This is not

3Due to numerical stability issues, we opt to add the log of probabilities rather
than multiplying them.
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possible since . To determine the final
absolute phase offset for the lead pixel in the chain, the average
log probability for each absolute phase offset is computed
and the absolute phase offset with the maximum average log
probability is selected. This absolute phase offset is then used
to determine the absolute phase for all the pixels in the chain.
For the case where two chains are connected together, the

smaller chain is unwrapped relative to the larger chain. That
is, each pixel in the smaller chain is unwrapped relative to the
lead pixel in the larger chain. In addition, the set of summed
log probabilities for the smaller chain is shifted to reflect the
relative phase offset between the lead pixels of the two chains.
The shifted log probabilities are then added to the summed log
probabilities of the larger chain. This is similar to the probability
distribution shifting and summing explained in the two pixel
chain examples in (10) and (11) except that it is being carried
out with respect to the lead pixels in the two chains rather than
individual pixels.

C. Removing Edges

The advantage of using stereo phase unwrapping to anchor
each chain is that it is no longer necessary to unwrap across
all edges, which is done in [15]. This allows us to determine
the absolute phase of spatially disjoint objects in the scene; in
addition it prevents us from unwrapping across unreliable low
quality edges that may have true phase differences greater than
. Local unwrapping fails when the true phase differences be-

tween neighboring pixels are greater than .
By limiting unwrapping to edges with quality greater than a

minimum threshold, we reduce the probability of unwrapping
across spatial or temporal discontinuities. By adding the time
dimension to unwrapping, small regions are unwrapped more
accurately since more observations are merged over time.
In our implementation, we choose aminimum quality value to

be met in order for the edge to be considered valid. Even though
this results in several smaller chains at the end of the unwrap-
ping process, the points within each chain are more likely to
be correctly unwrapped. In general, erroneous unwrapping only
occurs along the edges between discontinuous regions.

VII. EXPERIMENTAL SETUP AND RESULTS

To test the presented algorithms, we have developed an SL
system similar to the one in [27], but without using the color
camera for texture capture. The system consists of two Point
Grey Dragonfly Express cameras with a resolution of 640 480
and 1394b ports. We use an Optoma TX780 projector with a
resolution of 1024 768, operating at 60 Hz. Similar to many
other SL systems utilizing a DLP projector, the color wheel has
been removed to increase the rate at which grayscale patterns
are projected to 180 Hz [10], [51].
To illustrate the effectiveness of our proposed algorithm, we

have captured several data sets. Once the correspondences are
found between the camera and projector, the depth of each pixel
is determined via triangulation. We present results on the accu-
racy of the estimated absolute phase of the scene, or equivalently
the accuracy of the reconstructed point clouds.
Our current implementations of the viewpoint and temporally

consistent unwrapping algorithms do not operate in real time.

Fig. 9. Final unwrapped images using our algorithm of Section IV for (a)
camera A, corresponding to Fig. 4(a); (b) camera B, corresponding to Fig. 4(b).

Fig. 10. Unwrapped image for camera A, corresponding to Fig. 4(a), using the
method in [27]. Erroneous unwrapped regions are circled.

Generating the stereo matching data for both the viewpoint and
temporal unwrapping methods requires several points to be tri-
angulated for each pixel in the phase volume. The independent
nature of these calculations allows for the stereo matches to
be computed using a highly parallelized GPU algorithm. For
the viewpoint algorithm, the greatest bottleneck is in solving
for the correspondences between camera views using loopy be-
lief propagation. To speed up processing, a more efficient par-
allel loopy belief propagation algorithm could be used. Once
the set of available correspondences are solved, unwrapping the
remaining pixels is completed in linear time. For the temporal
unwrapping method, the bottleneck is due to iterating through
all the pixels in the phase volume. This step cannot be easily
parallelized since the chains are built up throughout the entire
phase unwrapping volume. In our non-optimized implementa-
tions, the unwrapping process requires on average less than 10
seconds per frame.

A. Viewpoint Consistent Unwrapping Results

Fig. 9(a) and (b) show the unwrapped results using our pro-
posed viewpoint consistent method of Section IV for the camera
images shown in Fig. 4(a) and (b), respectively. The algorithm
is clearly effective in properly unwrapping the illustrated phase
images. For comparison purposes, Fig. 10 shows the unwrap-
ping results for Fig. 4(a) using our implementation of the ap-
proach described in [27], but without using the left to right con-
sistency check. The consistency check is likely able to remove
some outlying pixels, but would not correct the mislabeled seg-
ments encircled in Fig. 10. Clearly, the reconstruction quality of
Fig. 9(a) is higher than that of Fig. 10. In a sample sequence of
700 frames, our method provides more accurate results than [27]
in 80% of frames, and performance comparable to or better than
[27] in 96% of frames. More specifically, in a sample sequence
of the 700 phase images, unwrapping via [27] results in an av-
erage error of 3.2% of incorrect foreground pixels compared to



420 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 5, SEPTEMBER 2012

Fig. 11. Merged camera A (red) and B (blue) points clouds resulting from un-
wrapped phases of Fig. 9.

0.5% for our method. In our experiments, we have found that
nearly all unwrapped images experience at least a few incor-
rectly unwrapped pixels. Unlike [27], in our experiments we do
no compensate for scene motion. The amount of motion in our
experiments has been deliberately limited in order to reduce the
errors in decoding the phase value at each scene point. Despite
our efforts, we do find that some of the decoded phase values
are incorrect, especially along the edges of the scene. For these
cases, we find that our algorithm is still able to unwrap the edge
pixels assuming the error is not too large. A video comparing the
two methods can be found on our website at [52]. The merged
point cloud generated from the two unwrapped phase images
in Fig. 9(a) and (b) is shown in Fig. 11. As seen, the merged
point cloud is denser than either component; furthermore, the
two components are reasonably aligned, and provide increased
scene coverage by alleviating occlusion.

B. Temporally Consistent Unwrapping Results

We show our algorithm’s ability to handle scenes with
disjoint objects. Fig. 12(a) shows the unwrapped phase of a
scene with disjoint objects using our proposed algorithm in
Section VI. Fig. 12(b) illustrates how the algorithm in [15]
fails to correctly unwrap the disconnected regions inside the
ellipse. In the phase image, a cone shaped object is lifted off
of a box. The cone and box objects are positioned at approx-
imately the same depth, so they should have nearly the same
unwrapped phase values as shown in Fig. 12(a). Since there are
no connections between the two regions, there is no way for the
algorithm in [15] to determine the phase difference between
the isolated segments. Our method handles this by using the
added information from the stereo camera as long as the points
are visible in both cameras. While existing SL approaches
using stereo cameras enforce only spatial smoothness during
the phase unwrapping process [27], our approach enforces both
spatial and temporal smoothing. To characterize the advantage
of temporal smoothing, we have compared our algorithm with
the stereo phase unwrapping method presented in [27]. Since
our method only determines the unwrapped phase of one
camera at a time, to do a fair comparison we do not implement
the left-to-right and right-to-left consistency check described

Fig. 12. (a) Correctly unwrapped scene using our proposed algorithm of
Section VI. (b) Incorrect unwrapping for the algorithm in [15].

Fig. 13. (a), (b) Two successively unwrapped phase images using the method
in [27]. (c) Regions of phase difference in consecutive images.

in [27]. This type of consistency check could easily be applied
to our method to provide the same benefits as the approach
in [27]. In the loopy belief propagation implementation, we
process ten iterations before generating the final labeling for all
segments. Figs. 13(a)-(b) and 14(a)-(b) show two successively
unwrapped phase images resulting from the algorithm in [27]
and our proposed algorithm, respectively. As seen, each image
in Fig. 13(a)-(b) suffers from more artifacts than the corre-
sponding one in Fig. 14(a)-(b). More importantly, the images
in Fig. 14(a)-(b) are more temporally consistent than those in
Fig. 13(a)-(b). The unwrapped phase difference between the
successive images in Figs. 13(a)-(b) and 14(a)-(b) are shown
in Figs. 13(c) and 14(c), respectively. As seen, the areas with
phase difference in Fig. 13(c) are significantly smaller and less
noticeable than in Fig. 14(c). Specifically, in Fig. 13(c), 15.3%
of pixels are not consistent over time as compared to 3.4% in
Fig. 14(c); some of the 3.4% corresponds to actual motion in the
scene. Visual inspection of the two phase video sequences also
confirms the temporal consistency of our approach as compared
to spatial only smoothing which exhibits a significant amount
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Fig. 14. (a), (b) Two successively unwrapped phase images with our proposed
algorithm of Section VI. (c) Regions of phase difference in consecutive images.

Fig. 15. Front board is moving fast in front of back flat surface; unwrapping
by (a) our proposed algorithm of Section VI; (b) the algorithm in [15].

of flicker. The comparison video can be found on our website
at [53].
In [15], the edges are sorted and unwrapped sequentially ac-

cording to the quality of the connection between pixels. Since
the lower quality pixels are unwrapped at the end, any potential
errors only affect the few pixels that follow in unwrapping order.
In our setup, it is not necessary for every pixel to be unwrapped
relative to all of its neighboring pixels since we combine the
absolute phase positioning from the stereo camera. Therefore,
our proposed algorithm eliminates the need to unwrap between
pixels with low quality edges. Fig. 15 shows the same scene
unwrapped with our proposed algorithm and that of [15]. In

Fig. 16. Example of 3-D geometry from incorrectly unwrapped phase image
generated via [27]. (a) Incorrectly unwrapped phase image with errors in the
arms and bottom of image. (b) Resulting geometry; points in green are due to
incorrect unwrapping of some regions in (a); points in blue result from our view-
point consistent algorithm which correctly unwrapped those regions.

Fig. 15(b) resulting from [15], the black circled regions contain
points that are unwrapped incorrectly. The phase in these re-
gions changes rapidly both spatially and temporally due to the
discontinuity between the two planes and the high motion of the
plane. As seen, the low-quality edges do not allow for accurate
unwrapping.
Both our methods are effective for scenes in which the ma-

jority of the points in the scene can be viewed by both cameras.
In situations where the two camera views are significantly dif-
ferent, neither of our stereo assisted methods is able to correctly
unwrap many points in the scene.

VIII. DISCUSSION

Even though the main focus of this paper has been phase un-
wrapping, it is informative to examine the effect of unwrapping
on the quality of the resulting 3-D point cloud. The errors due
to incorrect phase unwrapping are readily noticeable in the re-
sulting 3-D point clouds. Fig. 16(a) shows an incorrectly un-
wrapped phase image generated via [27] with errors in the arms
and along the bottom of the image. The resulting 3-D geometry
for this image is shown in Fig. 16(b). The red points represent
the correctly unwrapped points, while the points in green repre-
sent the incorrectly unwrapped segments. Applying our view-
point consistent method of Section IV, we obtain blue points in
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Fig. 16(b) which are a result of correct unwrapping. As shown
in this example, it is common to have unwrapping errors occur
over local segments.
One of the fundamental causes of error in the stereo SL

method is the false matches in the projected 3-D points [27].
When the points are projected onto the second camera view
it is possible for one or more of the non-corresponding points to
fall onto an image point that has a similar phase value to the one
being searched for. The likelihood of this depends on the scene
structure as well as the number of periods in the projection
pattern. When the number of periods in the projected pattern
increases, so does the probability of a false match.
In our viewpoint consistent unwrapping method, it is also

possible to incorrectly choose the correspondence by relying
on the stereo match data alone. Specifically, possible corre-
sponding 3-D locations from the left and right cameras all
lie along the ray out of the projector that corresponds to the
projector pixel being evaluated. In this setup, the correctness
of points is based on the closeness in Euclidean space of the
corresponding 3-D points in the left and right view rather
than closeness in phase. Switching the distance metric from a
Euclidean distance to a phase difference does not necessarily
guarantee better results. However, by enforcing the 3-D and
2-D cost functions in the energy minimization, our viewpoint
consistent method is able to generate accurate results.
The viewpoint consistent method offers an advantage over

[27] in that it determines the absolute phase of corresponding
pixels in the two camera views, thus ensuring consistency in
the final unwrapped phase between the two views. In [27], an
estimate of the absolute phase for each pixel is fed into a loopy
belief propagation algorithm. Despite using stereo information
to determine the absolute phase estimate of all the pixels in the
two camera views, there is no attempt to directly enforce the
corresponding pixels in the two camera views to the same ab-
solute phase value. For example, a pixel in the left camera may
find that its true corresponding pixel in the right camera has the
lowest correspondence cost, and thus the absolute phase is cor-
rectly set for the left camera. However, the actual corresponding
pixel in the right camera may not find the original pixel in the
left to have the lowest cost. Although the loopy belief propaga-
tion step in [27] can clear up some of these errors, it does not
ensure consistency across the two cameras.
In [27], the stereo matching information is used to select an

initial offset for each pixel. It is acknowledged that the stereo
information for a single pixel does not always indicate the cor-
rect absolute phase for a pixel. However, hard decisions are
made with these stereo measurements and the resulting errors
are later corrected by segmenting the initial unwrapped phase
image and by applying an energy minimization on the misla-
beled unwrapped image. In contrast, rather than selecting an in-
dividual offset for each pixel, our temporal method selects an
offset for a group of pixels that are first locally unwrapped ac-
cording to an edge quality measure. By restricting local unwrap-
ping to edges with high measures of reliability, the correct rela-
tive phase between all pixels in a chain can be determined with
high confidence. Once the relative phase of all pixels within the
chain is known, only a single offset needs to be chosen in order
to find the absolute phase for all pixels within the chain. The

final probability distribution for the chain is generated by com-
bining the “noisy” probability distributions of each pixel. In this
detection/estimation problem, many random variables are com-
bined to generate a new random variable with a distribution that
has a lower likelihood of error.
In [27], the estimated absolute phase is segmented by com-

bining pixels with a phase difference of less than . Phase un-
wrapping based on local gradients has been shown to be less
accurate than methods using other edge quality measures such
as discrete Laplacians [15]. In addition, once segmentation is
completed, the local smoothing component of the energy cost
function in [27] only operates along the edges of segments. If
incorrect labeling occurs within the interior of a segment, the
local smoothing cost component cannot detect the error. In con-
trast, all edges between pixels in our temporal method are ex-
amined, and are only connected if the edge is reliable.
The most significant difference between our temporal method

and existing phase unwrapping methods for SL is the enforce-
ment of temporal consistency in the unwrapped phase maps
[27]. In doing so, we take advantage of the inherent temporal
correlation between successively captured phase images. If the
capture rate of a system is high enough to ensure that the phase
at a single point does not change by more than in succes-
sive frames,4 then the same spatial local smoothing assumptions
during phase unwrapping can also be applied in the temporal
domain. In our case, consistent labeling over time is ensured by
building larger chains that span multiple frames. The offset for
each of these larger chains is determinedmore accurately as long
as only high quality edges are used during local unwrapping.
Finally, our temporal method improves the phase unwrapping

results obtained by applying the technique in [15] to a structured
light system. The primary motivation of the phase unwrapping
approach in [15] is magnetic resonance imaging applications.
Unlike [15], by using the stereo observations from two cameras,
our algorithm can determine absolute rather than relative phase
values.

IX. CONCLUSION

We have proposed two schemes for consistent phase unwrap-
ping in a stereo SL system. The stereo cameras in our system not
only aid in unwrapping phase, but also allow for reconstruction
of a class of disjoint scenes not possible in the single camera
case. Our viewpoint and temporally consistent phase unwrap-
ping methods are more robust than simple stereo assisted phase
unwrapping alone. Enforcing viewpoint and temporal consis-
tency results in fewer errors in unwrapped images and more ac-
curate point clouds.
In future work, the basic temporal unwrapping idea could be

combined with the viewpoint consistent approach. Rather than
running the energy minimization across the pixels of a single
projected image, a larger graph could be constructed with mul-
tiple projector frames. At least one new data term would have
to be added to enforce a smoothing in the labeling that occurs
across time. Another improvement is to apply a short sliding
temporal window in order to keep the computational complexity
manageable.

4For scenes with high speed motion, phase recovery at each pixel is erroneous
if not compensated [27].
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