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Abstract

In this paper, we describe a calibration method for multi-
camera-projector systems in which sensors face each other
as well as share a common viewpoint. We use a translu-
cent planar sheet framed in PVC piping as a calibration
target which is placed at multiple positions and orienta-
tions within a scene. In each position, the target is cap-
tured by the cameras while it is being illuminated by a set of
projected patterns from various projectors. The translucent
sheet allows the projected patterns to be visible from both
sides, allowing correspondences between devices that face
each other. The set of correspondences generated between
the devices using this target are input into a bundle adjust-
ment framework to estimate calibration parameters. We
demonstrate the effectiveness of this approach on a multi-
view structured light system made of three projectors and
nine cameras.

1. Introduction
Camera and projector calibration is a crucial step in the

deployment of many computer vision systems, especially in
those with multiple cameras and projectors. Common appli-
cations of multi-camera-projector (MCP) systems include
CAVE-like or large displays [14, 16] and multi-view geom-
etry capture with structured light [9, 6]. There are publicly
available tools such as Bouguet’s Camera Calibration Tool-
box [2] for calibrating cameras. Multi-camera calibration
has also been addressed in the literature with publicly avail-
able tools [17, 15, 8]. Specifically, Svoboda et al. propose a
multi-camera calibration method which tracks the position
of an LED across synchronized images from each camera
view [15]. Projector calibration has also been studied ex-
tensively. Since projectors cannot observe the scene, pro-
jector calibration has traditionally been preceded by camera
calibration[20, 12, 1]. Alternatively, it is possible to cali-
brate a camera and projector simultaneously [3, 18]. There
are also a number of approaches to calibrate multi-projector
systems such as CAVE-like augmented reality systems [4],

and flexible reconfigurable projection screens [19]. In the
majority of these approaches, the intrinsics and extrinsic
parameters are not directly computed. Rather, a mapping
between the projector pixels and projection surface is esti-
mated in order to reduce interference between projectors.

A number of methods have been proposed for full intrin-
sic and extrinsic calibration of an MCP system [14, 10, 11].
In [14], cameras and projectors are arranged to create a
large display surface. The geometry of the surface is re-
constructed by using structured light patterns to determine
correspondences between a pair of stereo cameras. These
points are triangulated to 3D positions that can then be used
to calibrate the projector. This process is repeated for each
projector separately. In [10], all the cameras are first cali-
brated; then each projector is calibrated by projecting fidu-
cials onto a board, capturing images of the projection, and
robustly detecting the 2D and 3D positions of the fiducials
to calibrate the projector. They develop an automated pro-
cess to make calibration easy to complete. With this ap-
proach, it is not possible to generate projector-projector cor-
respondences, except in configurations with highly over-
lapped views between the projectors; it is also not possi-
ble to generate correspondences between all devices in the
system. Kobayashi et al. perform MCP calibration as well
but require the cameras to be positioned such that they are
directly illuminated by the projectors [11]. This greatly re-
stricts the possible camera-projector system configurations.
The downside to each of these MCP calibration methods is
that the projector intrinsic and extrinsic parameters are es-
timated separately from the camera parameters, thus prop-
agating the error in the camera calibration to the projector.
Ideally, all parameters should be jointly recovered.

In this work, we address the problem of robust calibra-
tion of MCP systems. Our primary motivation is a multi-
view structured light system, as shown in Fig. 1, which
captures the dynamic geometry of a scene from multiple
perspectives. In particular, we are interested in camera-
projector configurations where the sensors in the system
surround a central observation volume. As seen in Fig. 1,
the cameras and projectors are oriented so that their cen-
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Figure 1. Layout of a multi-view structured light system. Arrows
represent the pairs of devices whose extrinsics are computed dur-
ing initial calibration estimation.

Figure 2. Calibration sheet used to increase overlapping view be-
tween cameras and projectors. The projected pattern on the sheet
appears sharp and in focus from both sides of the sheet.

tral axes of observation all roughly point towards the center
of a capture volume. Thus, some of the sensors are facing
each other rather than pointing in the same general direc-
tion. The key to joint calibration of a system with mul-
tiple cameras and projectors is to generate a set of corre-
spondences across all devices. To accomplish this, we use
a simple calibration target, namely a sheet stretched over
a PVC pipe frame, as shown in Fig. 2. Binary patterns
encoding the vertical and horizontal pixel locations of the
projector are projected onto this target to establish camera-
projector pixel correspondences across all cameras. The
patterns that illuminate the sheet are clearly visible from
both sides of the sheet making it possible to establish cor-
respondences between cameras and projectors even when
they are positioned in opposite facing directions. The sheet
does not significantly scatter the projected light, resulting
in the projected pattern appearing in focus from both sides

of the calibration sheet. The key to our approach is to de-
code the projector to camera correspondences in order to
generate camera to camera and projector to projector pixel
correspondences. The final set of global correspondences
consists of the projected coordinates of observed 3D points
in each of the devices in the system. This set along with
its corresponding set of 3D positions is input to a bundle
adjustment framework along with a coarse initial estimate
of each device’s intrinsic and extrinsic measurements. The
output is the refined intrinsic and extrinsic parameters for
all the devices in an MCP system. Of existing work in the
literature, our proposed approach comes closest to that of
[7] except that the translucent sheet enables us to find cor-
respondences among all devices, rather than only a subset
of devices with overlapping views.

The outline of the remainder of this paper is as follows:
Section 2 explains the pattern projection and decoding pro-
cess. Section 3 presents strategy for generating correspon-
dences across all sensors in the system. Section 4 includes
results on calibrating an actual system, and Section 5 pro-
vides concluding remarks.

2. Pattern Projection and Capture
To establish global correspondences between all devices,

first correspondences between each projector and all cam-
eras are generated. This is done by encoding the horizon-
tal and vertical position of each projector pixel with binary
structured light patterns. The overall calibration process re-
quires multiple correspondence sets to be generated by plac-
ing the projection target in multiple positions. In doing so,
correspondences are found at 3D locations that are spread
throughout the capture volume. At each target position,
each projector projects a set of vertical and horizontal bi-
nary coded patterns which are captured by all the cameras.
These images are used to establish global correspondences
across all devices. During calibration, the target is posi-
tioned in the center of the capture area within the limited
depth of field of the projectors. This ensures the projected
patterns appear in focus and allows for accurate decoding.

The outline of this section is as follows: We begin by de-
scribing the binary patterns in Section 2.1. The process for
decoding the binary patterns is explained in 2.2. Finally, the
correspondence mappings between the cameras and projec-
tors are presented in Section 2.3.

2.1. Pattern Projection

For a single camera and projector, pixel correspondences
can be determined by projecting binary coded patterns [14].
Most commonly, the patterns are generated by taking the
index value of each column of pixels in the projector and
representing it as as a binary number. A binary image is
projected for each bit of the binary representation. The re-
sult is a set of striped patterns of decreasing width as shown



in Fig. 3. Cameras observing a scene illuminated by the
binary patterns can determine the projector column illumi-
nating the scene point observed by each pixel by decoding
the set of binary patterns. This creates a correspondence
between each pixel in the camera and the columns of the
projector. If a set of vertical and horizontal binary coded
patterns are projected, then pixel to pixel correspondences
between the camera and projector are established. This pro-
cess is repeated for all cameras observing the binary pro-
jected patterns. 1

We opt to use a translucent, planar sheet as the projec-
tion target to calibrate all sensors. Translucency is needed
so that even though the target is being projected from one
side, the cameras viewing it from the opposite side can still
view and decode the projected patterns. The projected pat-
terns appear equally focused on both sides of the sheet, al-
though with slightly lower brightness when viewed on the
side not directly illuminated. Furthermore, to ensure proper
decoding, the sheet must approximate a planar surface. As
such, we have opted to frame it with PVC pipes as shown
in Fig. 2. Using a translucent sheet as a projection tar-
get greatly increases the positions from which cameras can
observe the projected patterns. In spite of this, cameras
whose central axis are nearly perpendicular to the normal
of the calibration sheet are unable to decode the projected
patterns. To resolve this, we capture image sets with the
target in different positions so as to obtain correspondences
between most devices. Specifically, for the MCP system
in Fig. 1, we place the sheet at the center of the cap-
ture area and orient it in multiple directions near the center
of the capture area for each pattern projection and camera
capture. In doing so, we are able to determine correspon-
dences between a projector and all of the surrounding cam-
eras. We use two sets of patterns to determine full pixel
to pixel correspondences: a vertical set of binary codes,
BV

n , n ∈ {0, ...,KV − 1}, and a horizontal one, BH
n , n ∈

{0, ...,KH −1}, where KV and KH are related to the reso-
lution of each projector, i.e. KV = dlog2(projector width)e
and KH = dlog2(projector height)e. In addition to the
frames that represent the binary value, the inverse of each
frame is also projected. As explained later, capturing a bi-
nary frame and its inverse makes the decoding process more
robust and obviates the need to choose a global threshold to
decode each frame.

2.2. Decoding

Once both sets of binary patterns are projected and cap-
tured by all the cameras, the images are decoded for a given
target position. To decode each bit in the projected binary

1An alternative to direct binary coding for the binary patterns is Gray
codes. We have empirically found direct encoding of the column indices
to be sufficient since we only keep the decoded positions for pixels that are
confidently decoded.

Figure 3. Vertical binary coded projection patterns.

code, the image for each bit and its inverse representation
are both used. We first compute the absolute difference be-
tween the two frames; the larger this difference the more
reliable a binary labeling of 0 or 1. A small absolute differ-
ence occurs when camera pixels are not directly illuminated
by the projected patterns or when the transition between
black and white stripes in the projected binary images falls
on a camera pixel. Only bits where the absolute difference is
greater than an assigned minimum threshold are considered
to be properly decoded. For such pixels, the bit is decoded
as a 1 if the intensity from a frame is greater than its inverse,
and as 0 when the inverse frame has a greater intensity. 2

After decoding all bits, we only keep the correspon-
dences for pixels where all KV and KH bits of the vertical
and horizontal patterns respectively are properly decoded.
For cases where the projector resolution is higher than that
of the camera, camera pixels can still be kept as correspon-
dences even if the least significant bits are not decoded.3

2.3. Mapping

Assume a system consists of the set of cameras C, pro-
jectors P , and target plane positions T . For each camera
c ∈ C at a given plane position t ∈ T , correspondence ma-
trices Qt

x:c,p and Qt
y:c,p are defined between the pixels of

the camera and the x and y coordinates of each projector
p ∈ P . The dimensions of Qt

x:c,p and Qt
y:c,p are both equal

to the resolution of the camera c. Each element in the corre-
spondence matrix holds the coordinates, either x or y, of its
corresponding pixel in projector p. These correspondences

2In our camera-projector configuration, the light sources of the projec-
tors are not visible in the captured camera images. For the configurations
where this does not hold, the lamp needs to be masked out and camera gain
needs to be adjusted accordingly.

3The projector-camera resolution mismatch for generating correspon-
dences makes the decoding of the least significant bits difficult [16]. It is
possible to use additional sparse high frequency patterns to obtain more
accurate correspondences.



are generated from the decoded binary patterns as described
in Section 2.2. Jointly, Qt

x:c,p and Qt
y:c,p are referred to as

Qt
c,p. In the remainder of this paper, we will drop the x and

y notation for each correspondence matrix and merely re-
fer to the union set. The correspondence matrices from the
projector to the cameras are defined as Q̄t

p,c
4 with the di-

mensions equal to the resolution of projector p. Each entry
in these matrices holds the coordinates to the corresponding
pixel in the camera c. We use Qt

c,p to populate correspon-
dence matrix Q̄t

p,c. Specifically for each camera pixel in
Qt

c,p, its corresponding projector pixel in Q̄t
p,c is populated

with the location of the original camera pixel. Fig. 4 shows
an example of Qt

c,p graphed as an image. The color in this
picture represents the value of the corresponding coordinate
in the projector. The figure illustrates how densely corre-
spondences can be determined between devices. Also, the
calibration target is large enough to allow correspondences
to be established throughout most of the camera’s field of
view. The target is placed at multiple positions to ensure not
only correspondences across all devices, but also correspon-
dences for all projector pixels. Mask matrices M t

c,p, M̄
t
p,c

are generated to indicate which pixels in Qt
c,p and Q̄t

p,c have
a correspondence. The sets of correspondence matrices and
masks are generated for all |T |×|C|×|P |×2 combinations
of t ∈ T , c ∈ C, and p ∈ P .

3. Full Correspondence Generation
So far, the sets of camera-projector correspondences for

each target orientation have been determined. The goal
is to use the individual pairwise correspondence sets to
find global correspondences across all, or nearly all, de-
vices. For each projector, the projector pixels with corre-
spondences in multiple cameras are used to identify a set of
potential global correspondences. For each of the projec-
tor pixels in this set, the corresponding pixels in each of the
cameras are identified. These camera pixels together with
the camera to projector correspondence matrices are used
to find potential correspondences to the other projectors in
the system. A detailed explanation of the above process fol-
lows.

To start, we use the set of pairwise correspon-
dences and masks from a single target position t,
Qt

c,p,M
t
c,p, Q̄

t
p,c, M̄

t
p,c,∀c ∈ C, p ∈ P to generate a set

of global correspondences Gt = {Gt
x, G

t
y}. Global corre-

spondences are those seen across many devices in the sys-
tem. The matrix Gt

x has |P | + |C| rows; its number of
columns is equal to the number of global correspondences
found for target position t. The global correspondence sets
for each target position are concatenated to create a final set
of global correspondences G =

⋃
t∈T Gt. The matrix G

4Throughout this paper, we use the bar for symbols related to the pro-
jector.

(a)

(b)

Figure 4. Mapping of correspondences from camera c to (a) x-
coordinates Qt

x:c,p and (b) y-coordinates Qt
y:c,p of projector p.

has |P | + |C| rows and the number of columns is equal to
the sum total of correspondence points found in all target
positions.

Fig. 5 shows the block diagram of the steps to generate
Gt for the first projector p′. The processing for the remain-
ing projectors in the system is more or less identical to the
first one except for a minor detail to be described shortly.

3.1. Correspondences using Visibility Matrices

We start by examining the projector to camera corre-
spondences for the projector p′, denoted by Q̄t

p′,c, c ∈
C. The set of correspondence masks, M̄ t

p′,c, c ∈ C, are
element-wise summed together,

∑
c∈C M̄ t

p′,c to obtain the
projector visibility matrix, denoted by V̄ t

p′ , for projector p′.
The dimensions of V̄ t

p′ are equal to the resolution of pro-
jector p′. The values in the projector visibility matrix rep-
resents the number of cameras that are able to view each
pixel of the examined projector p′. Only projector pixels
that are visible to enough cameras, i.e. larger than Cmin,
are considered as candidate global correspondences. These
pixels are used to generate the visible projector pixel mask
for projector p′ and target t, denoted by V̄ t

M :p′ . Intuitively,



Figure 5. Block diagram of the processing steps for the first pro-
jector p′.

the projector pixels in V̄ t
M :p′ have correspondences in a suf-

ficiently large number of cameras.
The visible projector pixel mask V̄ t

M :p′ along with the
projector to camera correspondences Q̄t

p′,c are used to iden-
tify the pixels in each camera, Ct

p′,c, that correspond to the
pixels in V̄ t

M :p′ . Intuitively, the camera pixels in Ct
p′,c iden-

tify the correspondences to those projector p′ pixels that are
“visible” in a sufficiently large number of cameras.Next, we
determine the number of projectors that can see each camera
pixel in Ct

p′,c denoted by matrix V t
c,p′ . The matrix V t

c,p′ is
defined by setting the (i, j)th value to

∑
p′′ 6=p′ M t

c,p′′(i, j)

for positions where Ct
p′,c(i, j) is non-zero. Next, we de-

termine the subset of camera pixels in V t
c,p′ that are visible

in a sufficiently large number of projectors, i.e. in more
than Pmin projectors. We denote this set by matrix V t

M :c,p′

and compute it for every camera. Intuitively the pixels in
V t
M :c,p′ represent pixels in camera c that are sufficiently vis-

ible and can therefore be used to calibrate the projector ex-
trinsically with respect to the other devices.

In most cases, if a correspondence between projectors
exists, multiple cameras are able to observe it. Sometimes
small errors in the camera to projector pairwise correspon-
dences can occur due to the mismatch in resolution of cam-
eras and projectors. The camera redundancy in these pro-
jector to projector correspondences can be used to remove
decoding errors. To do so, we stack the set of redundant ob-
servations from multiple cameras to find correspondences
between projector p′ and p′′. For each set of redundant ob-
servations corresponding to a single projector to projector

correspondence, the median x and y coordinates are used as
the actual correspondence location and stored in matrix Gt

p′

along with correspondence coordinates for the cameras.
3.2. Global Correspondence Matrix

We now proceed to find correspondences Gt
p′′ for the

second projector p′′. A matrix V t
M :p′′ for a second projector

p′′ is generated in the same way as V t
M :p′ for the first projec-

tor p′ and its coordinates are compared against those in Gt
p′

from the first projector p′. Duplicate points are removed
and the processing is continued using the same method as
for p′. We remove the redundant points so as to ensure that
each global correspondence equally contributes to the final
calibration solution. Note that generating Gt

p for each indi-
vidual projector is only necessary when Pmin is less than the
number of projectors. Otherwise, if it is equal to the number
of projectors, it is sufficient to only perform the processing
on a single projector. In practice, the value chosen for Pmin
is dependent on the layout of projectors in the MCP system.
If all projectors illuminate a common area, then Pmin should
be set to the number of projectors in the system. If the pro-
jectors do not all share a common observation region, then
Pmin should be set to the smallest number of projectors illu-
minating any one portion of the capture region.

Next, the global correspondence points generated from
each projector are concatenated into a single matrix to gen-
erate the total set of correspondences for the plane position
t, Gt = {Gt

1, G
t
2, . . . , G

t
N}. The process for plane t is re-

peated for all the other plane positions, and a final set of cor-
respondences is generated by concatenating the correspon-
dence matrices from each target, G = {G1, G2, . . . , GT }.
Matrix G represents the correspondence matrix between ev-
ery sensor in the system. Before this data is applied to a
bundle adjustment (BA) framework, we need to provide two
other pieces of information as initial conditions to the BA:
1) a coarse estimate of the calibration parameters and 2) an
estimate of the 3D positions of the correspondence points.
3.3. Bundle Adjustment

The coarse intrinsic calibration estimate of each cam-
era is generated via Bouguet’s camera calibration toolbox
[2]. Additionally, we use the stereo calibration feature of
the toolbox to estimate the extrinsic relationships between
neighboring pairs of cameras. We refer to the process of
solving for this extrinsic relationship as “pairwise” calibra-
tion. Enough extrinsic pairwise estimates are generated to
convert each camera to a defined world coordinate system,
which is conveniently chosen to be the same as the coordi-
nate system of one of the cameras. To generate the coarse
intrinsic and extrinsic calibration for the projector, we use
the Projector-Camera Calibration Toolbox [5] which is built
on top of Bouguet’s toolbox [2].

The 3D points provided to the bundle adjustment process
are generated by triangulating the existing corresponding



Figure 6. Single station from our multi-view structured light sys-
tem.

points from a pair of cameras. If all correspondences are not
visible from a single camera pair, the remaining points are
triangulated with another camera pair and then transformed
into the world coordinate system. The cameras used to tri-
angulate the 3D points should have a similar field of view.
It is convenient to define the world coordinate system with
respect to one of the cameras in the pair. The estimates
for 3D position, sensor intrinsics, sensor extrinsics, and the
correspondence information are input into a bundle adjust-
ment framework [13] to refine sensor intrinsics and extrin-
sics. The output of the BA provides us the intrinsics of each
device, including radial distortion parameters, as well as the
extrinsic parameters.

4. Results

The proposed calibration method is demonstrated on a
multi-view structured light system consisting of three sta-
tions surrounding a central capture area. Each station is
equipped with two grayscale cameras, i.e Point Grey Drag-
onfly Express 640 × 480, a color camera, i.e. Point Grey
Flea 2 640×480, and a video projector, i.e. Optoma TX780
1024 × 768, as illustrated in Fig. 6. Each camera and pro-
jector is pairwise calibrated with respect to a single camera
in each station to be used as initial conditions in BA. In Fig.
1, the pairwise calibrations within each station are shown
as dashed arrows, and those between stations are shown as
solid arrows. In total, nine cameras and three projectors are
calibrated. The calibration plane is positioned in eight dis-
tinct orientations at the center of the capture area in order to
generate the global correspondence points, as described in
Section 3, to be used in bundle adjustment. Cmin and Pmin
are set to 8 and 3, respectively. All three projectors are able
to clearly see the projection target positioned in the central
capture area, so Pmin is set to three. We opted to set Cmin to
8 rather than 9 to accommodate the cases where a camera
may not be able to decode the projected pixels due to the

Figure 7. Comparison of the reprojection error using the proposed
calibration method vs. pairwise calibration.

large angle between the central axis of the camera and the
normal of the calibration target. In total, 17,262 points are
used for calibration. Fig. 7 compares the reprojection error
of our proposed calibration method against pairwise calibra-
tion. As seen, the reprojection error of sensors is consider-
ably smaller for our method than pairwise calibration. Fig.
8(a) illustrates the projection of 3D correspondence points
onto the coordinate frame of camera 7. The misalignment
between the projected points and the actual point locations
are especially visible on the left hand side of the image. Fig.
8(b) shows an improved alignment with the new calibration
method.

MCP calibration greatly affects the quality of 3D recon-
struction in the multi-view structured light system of Fig.
1. We compare the accuracy of pairwise calibration with
our proposed method on a spherical test object of radius
31 cm by applying phase shifted sinusoidal patterns for 3D
reconstruction. Partial reconstruction from each of the six
grayscale cameras C1 through C6 in Fig. 1 are merged and
a least square fit to the spherical point cloud is obtained.
Average distance and standard deviation of the points in the
point cloud to the sphere are then used as two accuracy met-
rics to compare the two methods. The average distance of
the proposed method and pairwise calibration are 2.7 mm
and 11.0 mm respectively. The standard deviation of the
proposed method and pairwise calibration are 2.0 mm and
5.9 mm respectively. The results indicate a closer fit to the
sphere and hence superior accuracy of the proposed calibra-
tion method. Both calibration methods generate an estimate
of the sphere’s radius that is within the margin of error, i.e.
1.6 mm, of the manually measured radius. Fig. 9 shows
slices of the reconstructed sphere along x,y, and z axes for
both calibration methods. The double surfacing is clearly
visible in Figs. 9(b), 9(d), 9(f) and 9(h).

Fig. 10 shows three views of merged point clouds for
a moving person generated by the sinusoidal phase shifted,



(a)

(b)

Figure 8. Reprojection error using (a) pairwise calibration; (b) pro-
posed method. Image locations are shown in green and the pro-
jected image locations in blue.

three-view structured light system shown in Fig. 1, cali-
brated with our proposed method. The resulting point cloud
from each camera is shown in a different color. As seen, the
resulting point clouds from all six cameras are well aligned.

5. Conclusions
We have proposed a method for calibrating an MCP sys-

tem by generating correspondences across all sensors in the
system. Aside from generating correspondences, our cal-
ibration target opens up the possibility of generating cor-
respondences between projectors. The method is effective
even in environments where the viewpoints of all sensors
surround a central area and do not necessarily share a field
of view.
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