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Abstract—We propose a class of rate-distortion optimized
packet scheduling algorithms for streaming media by generating
a number of nested substreams, with more important streams
embedding less important ones in a progressive manner. Our goal
is to determine the optimum substream to send at any moment in
time, using feedback information from the receiver and statistical
characteristics of the video. To do so, we model the streaming
system as a queueing system, compute the run-time decoding
failure probability of a group of picture in each substream based
on effective bandwidth approach, and determine the optimum
substream to be sent at that moment in time. We evaluate our
scheduling scheme with various video traffic models featuring
short-range dependency (SRD), long-range dependency (LRD),
and/or multifractal properties. From experiments with real video
data, we show that our proposed scheduling scheme outperforms
the conventional sequential sending scheme.

Index Terms—Multimedia, rate-distortion optimization, scala-
bility, scheduling, streaming.

I. INTRODUCTION

STREAMING media applications are becoming increas-
ingly more popular on the Internet. Properties of streaming

media include the following. First, the media is pre-encoded
without the knowledge of run-time channel status during
transmission. For this reason, the encoding is desired to be
flexible, e.g. using scalability, in order to achieve graceful
degradation during channel fluctuations. Second, compared to
interactive applications, streaming media applications typically
have a pre-roll buffer, e.g., 5–20 s, allowing for rate-distortion
optimization and data packet scheduling to adaptively select
data to be transmitted, as the channel status varies.

Encoded media data consist of packets with different levels of
importance in terms of base/enhancement layers, frame types,
and motion/texture fields. In a sense, there is a complex de-
pendency relationship across the different video packets, and
lost or late data packets have different impact on video quality.
Therefore, it is highly desirable to apply unequal error protec-
tion (UEP) to different types of data packets in a rate-distortion
optimized manner. As a means of UEP for packet streaming of
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stored media, various types of hybrid ARQ algorithms including
type-I and type-II for video transmission are investigated in
[1] and [2]. These studies improve overall packet throughput,
but they do not address UEP and/or rate-distortion optimiza-
tion problem for streaming media. In rate-distortion optimiza-
tion context, a heuristic formulation and cost function is pro-
posed for suboptimal video packet scheduling in [3].

In this paper, we address the problem of packet scheduling of
streaming media over a lossy network, in a rate-distortion opti-
mized way, assuming reverse channel availability, and no con-
traction or expansion of the original display duration of clips.
Generating a number of nested substreams, with more important
streams embedding less important ones in a progressive manner,
our scheduling algorithm determines the optimum substream to
send at any moment in time, using feedback information from
the receiver and statistical characteristics of the video. In our ap-
proach, we incorporate a stochastic process to model the nested
substreams. Video traffic streams have been shown to have both
short-range (SRD) and long-range dependency (LRD) [4]–[8].
Recent research shows video traffic may be modeled as multi-
fractal cascade accounting for the multiscaling property of the
traffic [9]–[12]. Our proposed scheduling scheme is based on ef-
fective bandwidth or equivalent bandwidth calculated from var-
ious video traffic models including SRD models [13], fractional
Brownian motion (FBM) [12], [14], fractional autoregressive in-
tegrated moving average (FARIMA) [4], [6], and multifractal
cascade [10].

The rest of this paper is organized as follows. In Section II,
we analyze rate-distortion optimization problem for error-free
channels with restricted bandwidth. In Section III, we take into
account the video bit rate fluctuation and channel bandwidth
fluctuation to propose a packet-scheduling scheme based on the
concept of effective bandwidth. In Section IV, our proposed
scheme is evaluated in actual wireline and wireless scenarios.
Finally, we conclude in Section V.

II. RATE-DISTORTION ANALYSIS

In this section, we analyze distortion in streaming over
fixed-bandwidth channels, taking into account error conceal-
ment techniques. For the sake of simplicity, in this section, we
assume that the video is encoded without scalability or MTD.

Assume a video frame sequence with
frame rate in frames/s. Suppose that the receiver begins to
display at time ; then the display time or deadline of

is s. Assume that the video sequence is divided into
GOPs, where a GOP has frames consisting of one I frame and

P frames. Letting , we have
frame if , and if . Within each GOP, the th
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P frame is labeled as . We divide the
data in a GOP into importance levels, ,
where highest level is assigned to the most important
data part, and lowest level , to the least important
data part. In this section, we assign to I frames and
to .

Let and denote the size in bits of an I and P frames,
respectively, which in this section are assumed to be fixed. For
the sake of simplicity, assume frame rate of frames/s,
i.e. a GOP duration is 1 second. The average video rate is then
given by bits/s.

In this paper, we assume video streaming under unstable
channel condition in which the channel bandwidth is tem-
porarily less than the average video bit rate. Consider an
error-free restricted-bandwidth channel with bandwidth of

bits/s, which is smaller than the average video rate, and
greater than half of the average video rate. Error-free channel
assumption implies channel throughput is equal to the channel
bandwidth, , because the sender does not need to retransmit
packets.

In this section, we assume that can be successfully de-
coded at its display time, , only if (a) all its preceding
frames within the GOP, i.e., , have
been successfully decoded, and (b) the data for is available
at the receiver by its deadline. In this context, a frame is either a
decoding success or decoding failure, and hence will be referred
to as a successful or failed, decoded frame. Define as the
decoding success probability of I frames, and , the
decoding success probabilities of , respectively.
Obviously, the number of successfully decoded frames
cannot be greater than that of preceding frames, resulting
in

(1)

In this section, we assume zero round trip time and a sched-
uling scheme in which, for a frame missing its deadline, the re-
maining of the GOP is dropped. Thus, no arriving packet is use-
less, i.e., the throughput is equal to the goodput defined as traffic
rate delivered to the receiver, excluding duplicate packets and
useless packets due to any reason. Recalling that the throughput
is also equal to the channel bandwidth, we get

(2)

We now consider simple error concealment of a failed, de-
coded frame by copying the latest, successfully decoded frame.
Let denote distortion caused by the de-
coding failure of frame caused by the loss of , i.e.,
the receiver displays at the display time of , .
For example, if is successfully decoded and the following

is lost, then the distortion for is and for the following
is . Specifically, we define

(3)

where denotes the mean squared error between
and . Obviously we have

. In this section, we assume that dropping an I frame at the
sender occurs only when all frames in previous GOP have been
successfully transmitted. Then the distortion caused by loss of
an I frame is .

Let denote the decoding failure probability for a
. We can write the distortion of a GOP as the summation of

the distortion of each type of frames as follows:

...

(4)

Our goal is to find ’s to minimize with constraints (1) and
(2). Referring to [15], candidates of optimized condition are
given by either (a)

(5)

where

(6)

under which we have

(7)

or (b) one of the following conditions

(8)

where , and denotes the
greatest integer less than or equal to , and we have

(9)

The meaning of conditions (5) and (8) is as follows. Condition
(5) implies sending all I frames and through frames with
probability one, sending with probability

, and dropping through . Here, we refer
to as the protection scope. Conditions in (8) imply sending all
I frames and through frames with probability

, and dropping through . In this case, is
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Fig. 1. Normalized GOP distortion as a function of protection scope. (a) Talk show; (b) movie trailer.

the protection scope. Note that the protection scope in the latter
case, , is larger than the former case, .

Given , , , , and ’s, we choose the optimum
condition to be the one that results in lower distortion as follows.
Combining (7) and (9), let denote
the distortion of a GOP with protection scope of according to
(5) and (8):

for ,

for .
(10)

We compute the optimum to minimize the distortion,

(11)

If , the optimum condition is given by (5), else it is
given by

(12)

Let us call parameter in (11) the optimum importance level;
thus high priority corresponds to frames I through .

In Fig. 1, we show frame distortion, , as a function of
with various channel bandwidth as a percentage of the average
video traffic rate, where . We use real video traces:
MPEG-4 encoded talk show and movie trailer video clips. In
each curve, the left most point with a triangle corresponds to
condition (5) with . The optimum
is denoted by filled triangle or circle in each curve. With per-
centage channel bandwidth from 100% down to 65% of the

average video data rate, the distortion is minimized by setting
. With channel bandwidth of 62% and 57%, in talk

show video, the optimum conditions are achieved by setting
and , respectively, as in (12). With

heavily restricted channel bandwidth, sacrificing I frames with
large size allows increasing high priority scope significantly; for
talk show and movie trailer videos, the ratios are 5.3 and 2.5, re-
spectively, and we observe a more notable effect in the talk show
video in Fig. 1. A conclusion in this section is that we achieve
optimum condition when is either equal to or near .

III. PACKET SCHEDULING BASED ON EFFECTIVE BANDWIDTH

In practical situations, it is necessary to consider video rate
fluctuations, time-varying queue length in the receiver buffer,
and channel bandwidth fluctuations due to congestion or bit
errors. In this case, the channel bandwidth, throughput, and
goodput are no longer the same. These realistic conditions are
taken into account in this section to develop a real-time im-
plementable scheduling algorithm for media packet streaming.
Based on the results from the previous section, we take (5)
as an optimal condition resulting in minimum distortion in
most cases; in addition, (5) yields smaller variability in visual
quality across frames, than (8)—an important factor in human
perception.

A. Effective Bandwidth of Video Data

We assign importance levels to encoded data taking into ac-
count MTD and temporal scalability as in [16]. Once data in a
GOP is divided into parts according to the importance levels,
each part is segmented into fixed-size packets for transmission.
From these parts, we construct nested substreams, with
the ones containing more importance levels embedding the ones
with fewer importance levels in a progressive manner as shown
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Fig. 2. Examples of substreams and the video rates.

in Fig. 2. Define a random process to be the
sequence of the size, in packets, of data with importance level

in the th GOP. Also define to be
the partial sum such that

(13)

Autocovariance of is defined as

(14)

For a threshold , let denote nested substream containing
importance levels from through . Assuming GOP
duration of 1 s, the average data rate of is in
packets/s.

For substream , we introduce a virtual queueing model,
with as the stochastic input process, an output service rate
equal to the channel bandwidth packets/s, and a buffer of
size . In our scheduling scheme, we assume VBR video
data, which is transmitted at a constant rate of average video
rate. Given , the decoding failure probability for is ob-
tained as the probability that the real receiver buffer becomes
exhaustive, i.e., some data with importance level from zero to
is not available for current frame on display. We take the over-
flow probability of the virtual queueing system as an estimation
of the probability that the real receiver buffer is empty for ;
though, the former is overestimation of the latter. In order to
make the queueing model effective, the buffer size of the
queueing model needs to be determined carefully by taking into
account the receiver buffer status. Specifically, the buffer size,

, in packets, is determined from the pre-stored video du-
ration for substream , in the receiver buffer, according to
the average data rate of . In our approach, we relate
to the number of GOP’s for the data with importance levels of

through as follows. The server has acknowledg-
ment status of every packet. Suppose that the receiver is cur-
rently decoding a frame in GOP number , and the largest GOP
number, for which all packets with importance have so far
been acknowledged, is measured to be . To repre-
sent the buffer size corresponding to seconds in terms
of the number of packets in whose average rate is
packets/s, we propose to determine as

(15)

In Fig. 3, we show an example of determining of from a
given status of receiver buffer with . In each GOP, the
frames for which no data is available in the receiver buffer are
denoted by tick marks. This is done in order to relate to

Fig. 3. Example of buffer size of the queueing model from receiver buffer
status.

time. Specifically, if the marked no data part is not available by
its deadline, the receiver displays the last decoded frame.1 Note
that is a constant which is obtained off-line, whereas
and are time-varying parameters.2

For , we define the decoding failure of a GOP as loss of
any motion packet in the GOP within .3 Let denote
GOP decoding failure probability requirement for . Also let

be the packet loss probability during the transmission of
. Given , we translate it into the packet loss probability

requirement, , by referring to Appendix:

(16)

From queueing theory, we note that is a monotonically
increasing function of .

Let denote the effective bandwidth of ; assuming
to be an input process to a queueing system with finite

buffer size with size , the effective bandwidth of the data
rate process of is defined as the min-
imum service rate of the queue in order to guarantee the loss
probability less than . In our scheduling scheme, the video
traffic is modeled by any stochastic process as long as the effec-
tive bandwidth can be obtained in real time. In the following, we
show how to calculate the effective bandwidth for well-known
video traffic models of .

1) Short-Range Dependency (SRD) Model: Assume that
is wise sense stationary. Suppose the sequence ,

, satisfies the assumptions of the
Gärtner–Ellis theorem [13]. This class of stationary sources
includes Gaussian sources, Markov (and its variants) sources,
autoregressive moving average (ARMA) sources, etc. [6], [13],
[17]. The effective bandwidth is given by [13]:

(17)

Here the autocovariance is assumed to have exponential
tail, and consequently be infinitely summable corresponding
to short-range dependency (SRD). The effective bandwidth

1The received packets will be packed in the receiver buffer without gaps in
actual implementations.

2Here, the number of packets in the receiver buffer within GOP numbers k
through m has no effect on missing deadlines of future frames.

3Due to channel conditions
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of is larger than its average bandwidth, , by a
certain amount which is a function of the characteristics of
input process, buffer size of the queueing system, and the loss
probability. Intuitively, the difference becomes larger as the
loss probability requirement is tightened and/or variability of
the input process increases, and/or as the buffer size of the
queueing system decreases.

2) Fractional Brownian Motion (FBM): Long-term
memory in video traffic implies that . A
widely-used long-range dependency (LRD) model for video
traffic is fractional Brownian motion (FBM) where is
modeled as a fractional Gaussian noise. In FBM, the number of
arrivals in an observation interval can be represented by a
self-similar fluctuation about its expectation:

(18)

where denotes the number of arrivals up to time , is
the mean arrival rate, is the variance coefficient, and is a
normalized FBM with Hurst parameter . In our notation, it is
represented as

(19)

where a GOP time is assumed to be 1 s. Applying the analysis
result in [14] to our scheduling scheme, the effective bandwidth
is given by

(20)
3) Fractional Autoregressive Integrated Moving Average

(FARIMA): Calculation of effective bandwidth based on a
model that captures only the long-term memory property
is inadequate when the traffic shows both SRD and LRD.
FARIMA model is widely used to capture both SRD and LRD
of video traffic [4], [6]. We invoke the results in [7], where
the video traffic is modeled as log-normal FARIMA, i.e., the
histogram of MPEG GOP trace is characterized by log-normal
probability density function (PDF), and the effective bandwidth
is calculated by transforming the log-normal random variable
into the Gaussian random variable and using an iteration
method based on the large-deviation theory. First characterize

as log-normal FARIMA in which the marginal PDF
of is modeled as the log-normal PDF and char-
acterizes both SRD and LRD. Consider the sequence ,

of which the mean is given by
and its variance is given by

(21)

Given and , we now construct an objective function of
as transmission rate of the queueing system, as follows:

(22)

where

Finally, the effective bandwidth is obtained as

(23)

4) Multifractal Scaling: Recent measurement and sim-
ulation studies have revealed that wide area network traffic
and VBR video traffic display complex statistical character-
istics—possibly multifractal scaling—on fine timescales, in
addition to the well-known property of self-similar scaling
on coarser timescales in the context of LRD [10]. In [9], it
is shown that unreasonable overestimation of the equivalent
bandwidth of a flow can be made if scaling at small scales
are not considered in the modeling process, e.g., fractional
Brownian motion. If the multitime scaling property is essential,
the video traffic can be modeled as a combination of fractional
Brownian motion and multifractal cascade to account for the
small-scale effect corresponding to subframe scale using the
method described in [10]. In the above three modeling cases,
we use the fixed time scale of a GOP time and the traffic is
characterized by the stochastic process . If we consider a
time scale larger than a frame time , then the traffic
is characterized by FBM as in (19) and the th moment of the

is given by

(24)
where and , and means the double
factorial. If we consider a time scale less than , then
the traffic is modeled as multifractal cascade (MFC) and the th
moment of the counting process is modeled as

(25)

where

where we have [10]. We next construct an objective
function

(26)
where
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In the preceding equation, is substituted by or
according to the time scale. Finally, the effective

bandwidth is determined by

(27)

B. Packet Scheduling

Suppose we have a target GOP decoding failure probability,
. Given , the server determines the optimum

threshold of importance level such that

(28)
where in second denotes the maximum buffering time of
the receiver, for example, it is optionally set at less than 60 s
in Windows Media Player. Thus the optimum importance level
is basically the largest such that the GOP decoding failure
probability of substream is less than the requirement and
the queue length in the queueing model is less than the given
maximum buffering time. If it dose not exist, then we fine the
smallest holding only the queue length condition.

Since is constrained to be an integer, in an ideal scenario,
the server must alternate between and in order to
regulate the receiver buffer, and to maximize utilization of the
channel bandwidth. Specifically, the relative time spent at
versus has to do with receiver buffer fullness; when re-
ceiver buffer is full is chosen, whereas when it is empty
is chosen. To see the reason for this, consider the following ex-
ample. Suppose channel throughput is 100 Kbps, average video
data rate is 100 Kbps, there are 15 frames in a GOP, and frame
rate is 15 frames/s. Assume the high priority data is composed
of only I frames and the server sends all I frames first, whose
average data rate is assumed to be 10 Kbps compared with
total video rate of 100 Kbps. The decoder dose not display 15
I frames within 1 s, but only one I frame in a second. During
the displaying time for P frames, the sender will keep sending
all I frames, whereas the receiver will keep showing the same I
frame, resulting in no exhaustion of the receiver buffer until the
display time for extended I frame.

With , high-priority data part with importance levels from
through is scheduled to be sent first according

to EDF. In Fig. 4, we show importance levels to
illustrate scheduling examples for and , where the orig-
inal display order is shown on top. Assume corresponds
to I frames, corresponds to frames, and so on. At time

, and thus all frames with importance levels 0 and
1 are scheduled to be sent before all the frames with importance
levels 2 and 3. Suppose that the server has sent the first three
frames, i.e., frames with and 1 in solid squares and 0 in a
solid circle, up until at which time the threshold is
updated to 2. Then all frames with , 1, and 2 form high pri-
ority part, and frames with form low priority part, as seen
in Fig. 4. The server now continues with sending the third frame
in the new schedule, with in a solid square, given the first
two frames labeled 0 and 1 are already sent. In this example,

Fig. 4. Scheduling example.

compared with original video sequence, the resulting sending
order, so far, is [ , 1, 0, 2] instead of the original display
order , i.e., the I frame in the second GOP
was sent before the in the first GOP.

C. Channel Throughput

So far, we have assumed a given channel throughput, .
However, to make the scheduling algorithm be adaptive to time
varying channel fluctuations, the server needs to periodically
update channel throughput. Data sending rate at the server
is equal to the average video rate. The receiver measures the
channel throughput every seconds; define a random variable

to be the throughput measured at time . The scenes
within a video usually have correlations of order of several
seconds, whereas widely used on–off error models for networks
have average on and off durations of several tens or hundreds
milliseconds. Hence, compared to large autocorrelation of the
video data, is assumed to be i.i.d. The receiver reports the
measured throughput to the sender, which then updates
the average channel throughput as an exponentially weighted
moving average (EWMA) at time as follows:

(29)

D. Media Streaming Protocol

We assume our proposed scheduling scheme resides between
the application layer, i.e., coder/decoder, and the transport layer
in the protocol stack. For each received packet, the receiver
sends acknowledgment. The sender then updates the packet
status by dividing eligible packets into acknowledged, out-
standing, and not-sent packets; eligible packets mean future
packets under consideration for transmission, excluding all
packets with passed deadline and dropped packets due to
transmission failure of preceding frames within a GOP. Since
we assume no contraction and expansion of original display
duration of clips, the server is able to calculate the deadline of
each frame from current time and given frame rate.

The server needs to measure the statistics of the Round Trip
Time (RTT) of the channel in order to determine the eligibility
of a packet in terms of its deadline. Let denote the
maximum RTT over time. Considering possible asymmetric
traffic loads between forward and backward links, the for-
ward trip time, i.e., from sender to receiver, is assumed to be
upper bounded by . Thus, the sender uses
to estimate whether a packet arrives at the receiver before its
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TABLE I
INFORMATION ON VIDEO DATA

deadline, if it were to be sent.4 Once a packet is sent, the packet
is referred to be outstanding, and a timer is set to go off after

seconds. If the acknowledgment arrives before the
timer goes off, then it is referred to as an acknowledged packet.
If the timer goes off without acknowledgment, then the packet
becomes a not-sent packet to be retransmitted. Note that the
sender does not distinguish between retransmission packets
and first-time transmission ones.

IV. PERFORMANCE EVALUATION

Our proposed scheduling method is evaluated by sending
real video data in Table I over wireline and wireless channels.
We use Microsoft MPEG-4 Visual Reference Software version
2 FDMA1-2.3-001213, to encode/decode video data. We have
added error recovery/concealment features related to MTD
and temporal scalability. Our proposed scheduling algorithm is
implemented on top of the transport layer using UDP. For each
arriving packet of 1500 Bytes, the receiver sends 3 bytes of ac-
knowledgment including time stamp and measured throughput.

Our proposed scheduling scheme is referred to as Effec-
tive Bandwidth based Scheduling (EBS) in the remainder of
this paper, and is compared with a conventional sequential
sending (SS) based on EDF scheme without any optimiza-
tion. Initial preroll buffering is 10-s long, i.e., the receiver
begins display 10 s after it received the first packet. For our
optimization scheme, we use, , as the decoding
failure probability requirement for high priority part. Ac-
cording to (29), the average channel throughput is measured
every 1 s and updated according to “exponentially weighted
moving average” (EWMA) with a design parameter , which
is determined by taking into account the channel character-
istics. For , the newly updated channel throughput
is calculated as

. We have
s.

4We use RTT as the criterion in WLAN case due to asymmetric loads
between forward and backward links, and a half of RTT in wireline case
where the forward and backward trip time is assumed to be symmetrical.

First, we transmit talk show video over the wireline Internet.
The average round trip time was measured to be around 250
ms. We use talk show video with average video bit rate of 125.5
Kbps. Since the real channel bandwidth of the wireline Internet
is measured to be far larger than the video bit rate, we have im-
plemented ON/OFF type artificial error in the receiver. The du-
ration of each state is exponentially distributed; the average du-
ration of bad state is 50 ms; the percentage of the time bad state
is on varies in the range between 0% and 33%. The parameters
in this range correspond to average channel throughput of 100%
to 30% of the average video bit rate, 125.5 Kbps.

In Fig. 5, we illustrate the distortion curves for conventional
sequential sending (SS) and the proposed EBS with various
traffic models using motion-texture discrimination (MTD), as
a function of channel throughput. To begin with, the plane solid
curve corresponding to SS shows rapid video quality degrada-
tion as the throughput decreases. All the other curves are from
EBS with various video traffic models. The curve from SRD
model is marked with legend “EBS(SRD model)”. Scheduling
schemes with SRD model and FARIMA show the best perfor-
mance. Fractional Brownian motion (FBM) gives the worst per-
formance among the EBS scheduling results. However, multi-
fractal model shows good performance with very small differ-
ence compared with SRD model and FARIMA, although it is
computationally complex.

The results in Fig. 5 are explained as follows. Video traffic is
observed to have LRD and even multifractal properties. Specif-
ically, it has been observed that many real encoded video traces
have SRD property for correlation among frames up to sev-
eral minutes apart, and LRD, among frames apart longer than
that. In that context, SRD models can be successfully applied
to VBR video traffic for communication systems with buffer
size of practical interest [8]. In some situations, the empirical
autocovariance function (ACF) of video is better captured by
ACF of a form of SRD rather than LRD [5]. There is no doubt
that LRD model and multifractal model can be highly valuable
when analyzing the performance of modern high-speed routers
(layer 3) with aggregate traffic. However, for end-to-end video
streaming applications above the transport layer (layer 4), LRD
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Fig. 5. Rate-distortion curves with various schemes.

property generally has little or no impact on visual quality from
a practical viewpoint. For example, Windows Media Player has
buffering time of around 10 to 20 s with a maximum of 60 s.
Since our scheme runs at the application layer, i.e., above UDP,
and receiver buffering time is set to be 30 s in the experiments,
our proposed scheduling scheme is insensitive to LRD proper-
ties; this is seen as little difference in performance between SRD
model and FARIMA model in Fig. 5. The rel-
atively poor result from FBM is due to overestimation of the
equivalent bandwidth. This problem is overcome by multifractal
model, as expected in [9], where it is shown that the equivalent
bandwidth of a flow is overestimated if scaling at small scales
is not considered in the modeling process. However, the mul-
tifractal model is computationally complex and results in sim-
ilar performance as SRC and FARIMA models. This can be ex-
plained considering that multifractal model deals with fine time
scale at subframe level, whereas in our framework, we are pri-
marily concerned with intactness of an entire frame; specifically,
in our framework, a frame is displayed only if at least its motion
part is received in its entirety.

We also compare the performance of EBS with “Expected
Run-time Distortion Based Scheduling” (ERDBS) from [3],
where ERDBS is shown to improve visual quality by 2 dB over
SS scheme at packet loss rate of 20% or higher, which translates
to 100 Kbps or lower in the experiment in Fig. 5. Comparing
EBS(FARIMA) with ERDBS, we observe that our scheduling
scheme outperforms ERDBS by 1.2 dB at throughput of 90
Kbps (25% packet loss) and by 2 dB at throughput of 80 Kbps
(35% packet loss).

We next show that our proposed scheduling scheme further
improves video quality by incorporating temporal scala-
bility (TS). Fig. 6 exhibits rate-distortion curves from SS,
EBS(FARIMA) with MTD, EBS(FARIMA) with .
Two-layer temporal scalability is observed to increase the
encoded video size by 10%. Therefore, at channel throughput
of 125.5 Kbps, scheme shows degradation of
about 0.5 dB as compared with MTD-only scheme. However,
at channel throughput below 95 Kbps, scheme

Fig. 6. Rate-distortion curves for two-layer temporal scalability.

outperforms MTD-only scheme by 0.5 dB, showing more
graceful degradation.

We now consider wireless channels such as wireless LAN. In
Fig. 7, we show PSNR performance for streaming videos over
IEEE 802.11b wireless LAN. Referring to original video, PSNR
of a frame in an encoded video is defined as

(30)

where MSE is mean squared error between the two corre-
sponding frames in original and encoded videos. We evaluate
scheduling schemes in terms of average PSNR over 5 s. Gen-
erating background cross traffic, the server opens two sessions
with the client at the same time, one session with SS and the
other with EBS(SRD model) using MTD; this way, channel
congestion and/or interference have the same effect on both
schemes. The amount of background traffic is such that the total
packet loss rate to be 15%–30%. As seen in Fig. 7, the sched-
uling scheme shows significantly larger improvement over SS
than in the previous wireline network case. The average PSNR
is in parentheses. In each plot, video quality in the beginning is
good due to initial pre-roll buffering. However, as time goes on,
SS scheme shows degradation as the receiver buffer remains
empty most of the time, whereas EBS shows consistently high
video quality.

Finally, we run the streaming using Microsoft Windows
Media 9 under the same condition as in Fig. 7(c) with the
animation video. To be fair, we choose the streaming protocol
as UDP in the Windows Media menu option. With five minutes
of animation video, we observe more than 200 freezes; each
time the display freezes for about 1 to 4 s, and the total display
time is expanded to over 6 min. On the other hand, with the
assumption of no expansion of display time, our proposed EBS
never freezes.

V. CONCLUSION

We have developed a class of rate distortion optimized packet
scheduling algorithms, taking into account both video bit rate
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Fig. 7. Performance on wireless LAN. (a) Talk show; (b) movie trailer; (c) animation; (d) music video.

fluctuations as well as channel fluctuations. In doing so, we
take advantage of temporal scalability and MTD in order to
arrive at a set of nested substreams whereby the more impor-
tant substreams embed the less important ones. We apply the
notion of effective bandwidth from queueing theory to deter-
mine the optimum substream to send at any moment in time.
We have shown the effectiveness of our approach over sequen-
tial sending scheme for actual video sequences over both the
wireline Internet and WLAN. Future work involves optimiza-
tion over combined networks from wireline and wireless links,
optimization with VCR functionality, and applying EBS to mul-
ticast networks.

APPENDIX

In this appendix, we derive an approximation for the GOP
decoding failure probability when the packet loss proba-
bility for substream is given by in the queueing model.
Recall that we define a successful GOP decoding as the avail-
ability of all motion packets by their deadline. Referring to [16],
the motion data is related to importance levels from to

in all layering schemes under consideration.
Suppose that the server transmits data stream with

over a channel with packet loss probability . For
, then every packet in includes motion part, and thus,

a loss of any packet will cause GOP decoding failure. Since
the average GOP size is in packets, the GOP decoding
failure probability is given by

(31)

With MTD, importance levels correspond to texture
parts. When the sender transmits stream with

over a channel with packet loss probability , then among the
packets in only the packets with importance levels
through will affect the GOP decoding failure. The av-
erage size of data with motion part in a GOP is then ,
and thus the GOP decoding failure probability is given by

(32)

The above obtained decoding failure probability of a GOP,
given substream , is compared with a requirement in order
to find a optimum in our scheduling algorithm.
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