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Abstract – In this paper, we describe an automated technique for 

estimating power consumption by computers in buildings by 

processing visual imagery collected during a walkthrough of the 

building. This is an important problem since desktop and laptops 

are the largest contributors to electricity consumption in most 

large commercial buildings. The images used for estimation are 

obtained by a backpack equipped with a suite of sensors such as 

laser scanners, cameras, and an IMU, carried by a human 

operator walking at normal speed inside buildings. In addition, 

the operator carries a handheld infrared (IR) camera to take 

pictures of the CPU box of the desktops. We take a two step 

approach to this problem. First, we develop a technique based on 

convolutional neural networks to detect and count computers, 

which results in 90% accuracy as tested on a three story building 

with over 100 machines. Second, we develop an SVM based 

power estimation algorithm for computers using a handheld IR 

camera which captures both IR and visible light imagery 

simultaneously. The average power estimation error over 101 

computers is around 8%.  Combining these two algorithms, it is 

possible to accurately power consumption due to computers in 

commercial buildings.  

I. INTRODUCTION 

 

A major source of power consumption in commercial office 

buildings is desktops, laptops and computers. As such, 

automatic detection of computers in open offices can be 

helpful in estimating a major portion of electricity 

consumption in multi-storied commercial buildings. Such 

estimates are not only useful by themselves, but also can be 

used in conjunction with energy simulation engines such as 

energy plus [14,20] to model energy consumption inside 

buildings.  

 

Analysis of energy in multi-storied buildings involves three 

stages of building inspection: basic evaluation, diagnostic 

measurement, and advanced analysis. At each stage, an expert 

needs to walk through, inspect, and analyze energy 

consumption of different devices. The process is time 

consuming, laborious and error prone. In this paper, we utilize 

the advantages of sensing technology and computational 

algorithms to generate 3D models of building interiors which 

can then be used for energy analysis of buildings. Specifically, 

we use a novel system based on state-of-art backpack with a 

suite of sensors as shown in Fig. 1 in order to create 3D 

thermal models of buildings [17]. A human operator wears the 

backpack and walks through the building at a normal speed 

e.g. between 0.5 to 1 meter per second. Once the data is 

collected, it is processed offline and entirely automatically in 

order to generate the 3D path the operator traversed [1, 

2,5,6,7,19], the optical 3D point cloud, the thermal/IR point 

cloud co-registered with the optical point cloud,  3D models 

with surface reconstruction of walls and floors, and photo 

realistic rendering of the internal structure of multi-storied  

buildings [8,9,10,11].   

 

In this paper, we utilize the above data products generated 

from the backpack to estimate power consumption due to 

computers in buildings. To do so, we solve two distinct 

technical problems: first we use the imagery collected during 

the walkthrough to detect and count the number of computers 

in each room. Second, we develop an algorithm that uses 

infrared (IR) and visible light images to estimate power 

consumption for each computer. By combining the above two 

estimates, it is possible to estimate electricity consumption 

due to computers in commercial buildings. The outline of this 

paper is as follows: In Section II, we describe our approach to 

computer detection from visual images. In Section III, we 

describe our power estimation algorithms for computers. 

Section 4 includes experimental verification of our algorithms, 

and Section 5 includes conclusion.  

 

 
Fig. 1. CAD diagram of ambulatory Backpack 

 

II. DETECTING AND COUTING COMPUTERS 

 

We start by generating depth and normal maps for optical and 

IR images by using the 3D models generated from the 



backpack [8,15,19].  Fig. 2 shows an example of visible light 

image, IR image, and the corresponding depth and normal 

maps associated with the visible light image. The normal maps 

are used to remove the floors, walls and ceilings from the 

detection process thus limiting the search region to furnished 

portions of the rooms where computers are likely to be 

located. Next, we apply selective search algorithm [13] to 

generate candidate windows in the visible light image. 

Selective search is a useful tool for object detection as it 

possesses the attributes of both exhaustive search and 

segmentation. Similar to exhaustive search, selective search 

also tries to capture all possible object locations whereas like 

segmentation, it uses the structure of the image to direct the 

segmentation process. Finally, selective search is capable of 

capturing objects at different scales. Each window generated 

by the selective search method, is passed through a regional-

convolutional neural network (R-CNN) [4]. R-CNN solves 

two purposes simultaneously. On one hand, it localizes and 

segment objects by applying high capacity convolutional 

neural networks to bottom up region proposals. On the other 

hand, it boosts significant performance by domain specific 

fine tuning when labeled training data is scarce. 

 

The output from the first fully connected layer fc6, which is a 

sparse vector of 4096 values [4], is passed through a support 

vector machine (SVM) [3] model trained beforehand. To train 

the SVM model, 1070 images of desktops were downloaded 

from ImageNet [21] to serve as positive examples, and 8116 

images of cabinets, door frames, window frames to serve as 

negative examples. Each of these images is mean subtracted 

and passed through Alex-net [16] after being resized to 227 × 

227. Finally, the output of the first fully connected layer fc6, is 

used to train the linear SVM model. We than apply non-

maximum suppression to the output of the SVM for all 

candidate windows in order to eliminate redundant windows 

detected as object. Finally, the depth map for the visible light 

image is used to project the detected machine in the visible 

light domain onto the IR domain. Thus we obtain the final 

detected objects both in optical and IR domain. 

The output of the above algorithm is one candidate window 

per input visible light image. In order to count the total 

number of computers present in an area, we need to remove 

redundantly detected computers across multiple consecutive 

images. To do so, we first project the window corresponding 

to detected computer i in one frame onto the next frame with 

detected computer j by exploiting the knowledge of relative 

pose of successive images during the backpack localization 

step [2,19]. The goal is to determine whether these windows 

both correspond to the same computer or different ones. To do 

so, we apply the procedure described in [12]. Let bi and bj 

denote the set of all pixels in the rectangular window 

associated with detected computers i and j respectively. 

Define two scoring functions:  

𝑆(𝑖, 𝑗) =
|𝑏𝑖 ∩ 𝑏𝑗|

|𝑏𝑖|
, 𝑆(𝑗, 𝑖) =

|𝑏𝑖 ∩ 𝑏𝑗|

|𝑏𝑗|
 

where the absolute sign is used to count the number of 

elements in a set. Fig. 3 shows visual representation of the 

scoring function for computers i and j denoted with boxes of 

size A and B respectively. Intuitively S(i,j) represents the ratio 

between the size of the overlap region between i and j, and the 

size of i.   

 

Fig. 2. (a) Original visible light image and corresponding (b) IR image (c) 

depth map; (d) normal map  

 

Fig. 3. Visual representation of scoring function 

Once the above scoring functions are calculated for detected 

computers i and j, we apply the following logic to discard 

redundant computers across consecutive frames:   

(a) If S(i,j) and S(j,i) are both smaller than a prespecified 

threshold, both detected computers i and j are kept. 

(b) If S(i,j) is greater than the threshold and S(j,i) is less 

than the threshold, detected computer i is kept and  

detected computer j is discarded, and vice versa.  

(c) If both the scoring functions are greater than the 

threshold, the detected computer with a greater area 

is kept and the smaller one is discarded.  

 

III. POWER ESTIMATION  

The power estimation algorithm for each computer uses the 

visible light and IR images of the computer captured with a 

handheld IR device taken close to the computer. In doing so, 

most of the pixels in the IR picture correspond to a computer 

rather than the background, resulting in more accurate power 

estimate than if we were to use the pictures from the IR 

cameras on the backpack. An example of an IR picture from 

the handheld device is shown in Fig. 4(b).  

Our proposed power estimation algorithm is a two-step 

process, where in the first step we train a SVM to decide 

whether a machine is ‘on’ or ‘off’. If the machine is detected 

to be ‘on’ in the first step, we pass it through a support vector 

regressor (SVR) to estimate the power consumed by it. We 

train the SVR using the following features: (a) Histogram of 

Oriented Gradients (HOG) for the detected machine on the IR 

b c d a 



image. (b) HOG for the detected machine on the optical 

image. (c) Ray features from the IR image designed to capture 

the temperature distribution around the hottest spot in the 

image. This is done by casting rays in random directions from 

the hottest point. Consequently, the feature is represented as a 

histogram of temperature difference between the hottest point 

and the points at the rays ends. (d) Temperature statistics, i.e. 

minimum temperature, maximum temperature, average 

temperature. 

The features are computed at multiple scales around the 

hottest point in the image in order to achieve pose invariance. 

We refer to this approach as heat pyramid since it is similar to 

the spatial pyramid, except that the levels of the pyramid are 

constructed based on temperature. The top level of the 

pyramid is the smallest scale, where the features are computed 

within a small region around the hottest point. At the next 

pyramid level, the region around the hottest point is expanded, 

and the resulting features are concatenated with the features 

from the upper pyramid level. In our implementation, we use a 

two-level pyramid.   

With the above mentioned features, a SVR is trained and in 

the testing phase, power consumption is estimated on the 

detected machines using a ‘leave one desktop out’ cross 

validation technique. 

 

IV. RESULTS  

 

To characterize the performance of our power estimation 

algorithm, we use a Kill-A-Watt device in series with a 

number of desktops in order to measure their actual power 

consumption. Figure 4(a) shows the plot of estimated versus 

actual power consumption over 101 computers.  

 
Fig. 4. (a) Estimated vs actual power consumption. (b) IR picture from the 

handheld IR device. 

As seen, there is strong correlation between the estimated and 

actual power usage. The distribution of absolute estimation 

error over 101 desktops ranging in power from 50 to 500 watts 

is shown in Fig. 5. The average error in total power 

consumption over all 101 computers is only 8%. This is 

because the overestimation and underestimation errors over 

101 computers cancel each other out, thus resulting in a low 

average error. Next we compute the average error over 10 

computers rather than 101 to emulate performance in smaller 

buildings with fewer computers.  To do so, we perform 20,000 

trials whereby in each trial we randomly draw 10 out of 101 

computers to compute the average percentage error for that 

trial. Averaging the absolute values of those over 20,000 trials, 

results in 21% error between actual and estimated power over 

10 machines. This is to be expected since the larger the sample 

set over which we compute average error, the lower the 

percentage error. Finally, if we repeat the 20,000 trials over 

the 51 machines with actual power consumption between 50 

and 200 watts, we find the average error over 10 machines to 

be around 11%. This improved estimation for lower power 

machines can be explained by the fact that temperature 

measurement through an IR camera is a better proxy for lower 

power machines than higher power computers. This is to be 

expected since in practice a myriad of methods are used for 

heat dissipation and temperature control of high end machines.   

 
Fig. 5. Distribution of absolute error over 101 desktops. 

 

Next we apply our computer detection algorithm to the visible 

light images from a laboratory with 12 machines. Our 

proposed method estimates the number of computers at 11.  

The estimated power consumption for these 12 computers, 

together with the ground truth obtained with a power-meter 

put in series with the machines is shown in Table 1. The actual 

and estimated total powers are 542 and 597 watts respectively, 

resulting in relative error of about 10%.  

 

In practice, taking close up IR pictures of all computers during 

a walkthrough could substantially increase the acquisition 

time using the backpack. One way to alleviate this, would be 

to take close up IR pictures of a small sample of computers in 

an office building and use the average power for those as a 

proxy for power consumption for all other detected computers.  

 

Computer Id 

Actual 

Monitor 

Power 

Actual 

CPU 

power 

Estimated 
Power 

Absolute 
Error 

% Error 

105-22 21.1 31.0 57.26 5.16 9.90 

105-21 22.4 31.2 63.14 9.54 17.80 

105-20 23.2 33.4 62.22 5.62 9.93 

105-19 23.6 32.2 58.26 2.46 4.41 

105-18 23.3 32.3 56.70 1.10 1.98 

105-16 21.8 31.1 66.74 13.84 26.16 

105-15 20.0 31.5 58.55 7.05 13.69 

105-14 22.3 31.6 62.22 8.32 15.44 

105-13 21.8 33.4 62.03 6.83 12.37 

105-12 21.7 32.7 50.31 4.09 7.52 

Table 1. Quantitative results for computer power estimation 
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Figure 6 shows two examples of results of the computer 

detection algorithm on the laboratory dataset. The left picture 

in each pair, corresponds to visible light and the right one to 

IR.  The detected computers are represented by green boxes 

on the optical images which are then projected on the IR 

images. The advantage of detecting computers in the visible 

light domain is that even when a machine is off and hence not 

prominent in the IR domain, our proposed method based on  

visible light imagery can be successful in detecting in.  

 
Fig. 6. Visual results on detected computers in laboratory dataset (a) & (c)  

visible light domain (b) &(d) IR domain. 

 

In addition to the above laboratory dataset, we have validated 

our computer detection algorithm on Mulford Hall, which is a 

3 story building on U.C. Berkeley campus. Table 2 shows the 

manual and algorithmic count of machines for each floor 

indicating that our algorithm is more than 90% accurate for 

this large dataset. 

Floor 

Manual 

Count of 

Computers 

Algorithmic 

Count of 

Computers 

Accuracy 
(%) 

First 30 32 93.75 

Second 57 53 92.98 

Third 24 26 92.31 

Table 2. Quantitative Result on Mulford Dataset 

 

Fig. 7. Visual results on (a) first floor, (b) second floor and (c) third floor of 

Mulford Hall. 

Figure 7 shows visual results of 3 instances of detected 

computers on the 3 floors. Again the left image in each paid 

corresponds to visible light image and the right one to IR. 

Figure 8 shows few error instances of the computer detection 

algorithm. Figures 8(a) and 8(b) illustrate a missed detection 

instance with 2 computers on the two sides of the window. 

Our algorithm detects a large window corresponding to one 

computer, rather than two. Figures 8(c) and 8(d) on the other 

hand, show an instance of false detection where a microwave 

is detected as a computer as it appears visually similar to a 

computer. 

 

Fig. 8.Visual Representation of Error Instances(a) & (c) detections in visible 

light domain (c) & (d) detections in IR domain 

 

Fig. 9. Plots of detected computers on (a) first floor, (b) second floor and (c) 

third floor 

For the detected computers on all the three floors, we can also 

calculate the 3D co-ordinates and visualize them on the 

respective floorplans as shown in Figure 9.  The computers in 

the laboratory for Table 1 are in the upper right portion of the 

second floor.    
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