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Abstract— Although quadcopters boast impressive traversal
capabilities enabled by their omnidirectional maneuverability,
the need for continuous pilot control in complex environments
impedes their application in GNSS and telemetry-denied sce-
narios. To this end, we propose a novel sensorimotor policy
that uses stereo-vision depth and visual-inertial odometry (VIO)
to autonomously navigate through obstacles in an unknown
environment to reach a goal point. The policy is comprised
of a pre-trained autoencoder as the perception head followed
by a planning and control LSTM network which outputs
velocity commands that can be followed by an off-the-shelf
commercial drone. We leverage reinforcement and privileged
learning paradigms to train the policy in simulation through a
two-stage process: 1) initial training with optimal trajectories
generated by a global motion planner acting as a supervisory
backbone, 2) further fine-tuning in a curriculum environment.
To bridge the sim-to-real gap, we employ domain randomization
and reward shaping to create a policy that is both robust to
noise and domain shift. In actual outdoor experiments, our
approach achieves successful zero-shot transfer to both a drone
platform (DJI M300) and environments with obstacles that were
never encountered during training.

I. INTRODUCTION

Remote-controlled quadcopters are popular within com-
mercial and enterprise markets for their unparalleled mo-
bility in a small, cheap form factor. However, they have
several key drawbacks stemming from their control process
including bounds to where they can traverse due to wireless
connection limitations and the need for constant operator
attention. While autopilot for following preset simple paths is
a common feature, in obstacle-rich, dynamic or unknown en-
vironments autonomous navigation still is not fully realized.
This impedes their utilization in GNSS and telemetry denied
applications such as sub-canopy forest flight, underground
mapping, war zones, and industrial inspection.

As such, an open area of research is autonomous navi-
gation in unknown environments using only onboard com-
putation and sensors, typically in the form of vision-based
systems. While traditional methods decompose the naviga-
tion task into discrete planning, perception and control units,
new end-to-end learning-based methods using privileged
information are promising [17] [25]. These involve creating
an expert policy with full environmental and state data to
generate optimal paths, then distilling it into a student policy
using supervised learning. However, these methods use body
rates or trajectories followed by a model predictive controller
(MPC) to achieve agile flight which cannot be used as-is
across different drone models without further tuning [17].
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Fig. 1. Actual testbed is a DJI M300 with an attached Zed2i sensor for
depth estimation & VIO and a Jetson AGX Xavier for compute.

This paper seeks to train a policy that can be deployed
onto real drones of different sizes and classes in a zero-
shot fashion without any modification. We accomplish this
by pairing a deep Reinforcement Learning (RL) paradigm
and privileged learning to train an end-to-end model that
outputs reference velocity commands which can be followed
by off-the-shelf consumer drones through built-in APIs. We
take a modular approach to constructing this network where
a pre-trained AutoEncoder acts as a perception head by
mapping the depth image data to a low-dimensional latent
space. We then freeze the perception component and train an
LSTM planning/control network first with optimal trajecto-
ries as a supervisory backbone for the reward function before
further fine-tuning on a curriculum environment. To cross
the Sim2Real gap, we employ domain randomization and
policy smoothing to ensure successful transfer on varying
environments and platforms. Domain randomization teaches
the policy to be robust to sensor noise and trains the LSTM
to account for differing system dynamics such as latency,
inertia, etc. across time-steps [7]. Meanwhile, reward shaping
prevents large action fluctuations that would degrade the
drone’s stability and controllability.

The result is a system that can navigate through obstacles
to a goal in an outdoor environment using stereo-vision
depth and visual inertial odometry (VIO). We deploy this
system onto a hardware testbed depicted in Figure 1. With
real-world experiments covering a total of 650m in field
trials, the policy overcomes Sim2Real gaps such as scenery
changes, sensor noise, background clutter and crosswinds
demonstrating successful collision-free navigation in new
environments and on an off-the-shelf drone platform –the
DJI M300 RTK– that was never encountered during training.

II. RELATED WORK

There has been extensive research on methods for
collision-free drone flight in cluttered environments. In sce-



Fig. 2. Overview of System. In (c), we first pre-train an auto-encoder to process depth images which is used as the perception head of the policy in (a)
and (b). We then generate environments and calculate optimal trajectories to be used as a supervisory backbone. To train the input processing network and
actor-critic networks in (a), we use PPO for optimization and Flightmare for rendering/dynamics simulation. When deploying the policy in reality with
(b), we interface with the drone using the high-level DJI Controller and collect state estimates + depth image using the stereo RGB-D camera.

narios where perfect environment information e.g. 3D point
cloud or map is provided, many existing approaches take
a global planning perspective where dynamically feasible
trajectories are pre-computed using a sampling-based or
hierarchical algorithm [15] [20]. A related task, in terms of
goals though not necessarily methods, is autonomous racing
in known environments where the drones fly through gates.
State-of-the-art methods employ learning-based approaches
to handle noisy perception and dynamics [11].

For navigation in unknown environments, traditional meth-
ods can be separated into 3 components: perception, plan-
ning, and control. A common strategy is to use a reactive
planner which searches through a set of feasible trajectories
to generate a local plan. These can be split into three
approaches: building a map from past observations, directly
using past observations, and memoryless methods which only
use the current observation. Much of the research in this
area focuses on optimizing the trajectory search space and
collision-checking processes. Examples include bitwise tra-
jectory elimination [26], sampling-based schemes to generate
a free-space skeleton [9], and rectangular pyramid partition-
ing for efficient collision checking [2]. Other advancements
include safe-stopping trajectory planning [14] and integrating

semantic SLAM [16]. Despite these optimizations, end-to-
end neural policies remain architecturally more efficient, as
their inference is significantly simpler than tasks such as
map fusion. Furthermore, hardware acceleration—leveraging
NVIDIA DLA Cores or Mythic AMP—further enhances
inference speed. In addition, many classical approaches –
when integrated together– react adversely to compounding
errors in state estimation, system latency, and sensor noise.
As such, learning-based approaches replacing some or all
of this 3-part stack have become a focal point of research
in recent years [8]. In particular, end-to-end sensorimotor
policies that directly map vision to action have proven to be
effective in agile high-speed scenarios [6].

The architecture of these end-to-end networks can be
similarly broken up into a perception section and a plan-
ning/control section. For the perception network, common
practices are to employ convolution layers or an image
autoencoder pretrained on a separate image dataset, though
[1] suggests that Vision Image Transformers have better
OOD generalizability and performance. Other approaches
use neural monocular depth estimation to eliminate the need
for stereo cameras [28][29] and to train the autoencoder with
collision meshes so that the perception network outputs can



be collision-aware [12]. For control, many monocular ap-
proaches either have the perception network directly predict
a steering angle and collision probability [18] or follow a
state machine [19]. For end-to-end sensorimotor approaches,
while fully connected networks are commonly used for the
planning/control portion, some studies have proposed using
Long Short-Term Memory (LSTM) [7] or attention layers
[22] for their ability to implicitly compensate for sim2real
factors and remembering partially observed environments
over multiple time-steps. A diverse range of action outputs
have been explored such as generating local trajectories in
a receding horizon [17], outputting body rates [27], and
directly outputting motor commands [5].

To train these networks, either reinforcement learning
or imitation learning is typically used. Deep RL methods
employ a drone dynamics simulator such as Flightmare [24]
or AerialGym [13] to train a policy, though some works
also integrate real-world data as part of the training loop to
account for the sim2real gap in flight dynamics [10][4]. With
imitation learning, a privileged expert provides a supervisory
signal to a learned student policy, usually employing a
distillation approach where the mean squared error between
the student and teacher output is optimized. For the expert,
some works use traditional global planning methods [17]
while others use a Deep RL agent trained with privileged
information and a perception-aware reward [25].

Our work is closely related to [17] and [25] in that they
both aim to achieve real-world vision-based flight in cluttered
outdoor environments using a learning-based approach. [25]
focuses on optimizing flight in a known environment whereas
we focus on flight in unknown environments; also [25] uses
RL to train the expert rather than the policy itself. Our
approach differs from [17] in that: (a) [17] does not employ
any RL techniques, and (b) [17] uses an MPC tuned to
their custom-built first-person view (FPV) drone to follow
outputted polynomial trajectories whereas we aim to use
reference velocity commands that are drone-agnostic. To
train the deployed policy, [17] and [25] use imitation learning
to match the expert exactly. On the other hand, we use the
relative position of the optimal vs. rollout trajectory acts as
a component of the reward function in RL.

III. METHODOLOGY

We first provide an overview of our approach. We then
discuss the RL setup including reward function and policy
architecture. We then describe the training details such as the
simulation loop, domain randomization and learning phases.

A. Summary of Approach

Our approach –illustrated in Figure 2– trains a neural
network policy to autonomously navigate a drone to a target
while evading obstacles. The policy processes depth images
and state estimates from onboard sensors to generate velocity
commands for the drone to follow. We construct this policy
in two stages. We first pre-train an autoencoder, leveraging
its encoder to embed depth images into a low-dimensional
latent representation. We then freeze the image encoder while

Fig. 3. The state space consists of various measures of drone position
relative to goal position alongside the depth image. The action space consists
of 3 reference velocities: vertical, horizontal, and angular yaw.

training an LSTM actor and state processing network in
simulation using Proximal Policy Optimization (PPO). We
begin by generating a randomized training environment and
computing optimal trajectories using a global motion planner.
We then train the policy in this environment where the
optimal trajectories are a component of the reward function.
Finally, we introduce a more complex curriculum environ-
ment and fine-tune the policy without optimal trajectory
rewards, enhancing the policy’s generalization.

B. Model Architecture

State and Action Space We define the drone’s position
at time t as p⃗t = {pt,x, pt,y, pt,z} for x, y, and z respectively.
Likewise, the goal position is g⃗ = {gx,gy,gz}. As seen on
the left of Figure 3, the state vector at time t is s⃗t = {gx −
pt,x,gy− pt,y,gz− pt,z,φt ,ψt ,ωt ,∆ψ,zt} where φt , ψt , and ωt
are current roll, pitch, and yaw rates respectively in rad/s; ∆ψ

is the difference between heading towards goal and current
heading in radians; and zt is the flattened 192× 108 depth
image. As seen on the right of Figure 3, the action at time
t a⃗t = {vt,x,vt,z,aω,t} consists of horizontal velocity, vertical
velocity, and yaw angular velocity. These velocity commands
can be directly inputted or translated for the built-in APIs of
many off-the-shelf systems such as DJI or AR Parrot drones.

AutoEncoder Pretraining and Feature Extraction We
pre-train a denoising autoencoder using the process shown
in Figure 2(c). The encoder portion of this network acts
as a perception head for the policy by extracting a low
dimensional encoding R128 from the high-dimensional depth
image input R192×108. This aids with policy function conver-
gence by reducing the parameters that need to be trained and
allows us to tune the perception module separate from the
RL simulation loop. For the training dataset, we use DIML
[3] which contains depth images from a range of settings
e.g. brook, building, construction, overpass, street, trail and
inject Gaussian noise into the training input scaled by the
dataset’s per-pixel depth confidence metrics. This approach
helps with robustness by training the encoder on both a wide-
range of environment types and for the noise characteristics
of stereo depth measurements. As visualized in the Input
Processing portion of Figure 2(a), to extract features from the
observations we feed the first 7 state values st,1:7 (distance



TABLE I
REWARD TERMS. *ONLY USED WITH PRIVILEGED LEARNING

Term Expression Weight

Survival −λ1 λ1 = 10−3

Distance to Goal λ2(1−
∥⃗g− p⃗t∥2

∥⃗g− p⃗0∥2
) λ2 = 10−3

Heading Error −λ3h(ψt ,ζ ) λ3 = 1/3000

Z-position Error −λ4(gz − pt,z)
2 λ4 = 10−3

ω Magnitude −λ5a2
t,ω λ5 = 1/25

vz Direction λ6

−1.0, if vt,z(gz − pt,z)< 0

0.03, otherwise

λ6 = 1/5000

Velocity Towards Goal λ7(vt,x cos(h(ψt ,ζt ))) λ7 = 1/8000

Acceleration −λ⃗8 · (a⃗t − ⃗at−1) λ⃗8 =


1/20000

1/15000

1/20000


Yaw Jerk −λ9|(at,ω −at−1,ω )− (at−1,ω −at−2,ω )| λ9 = 10−3

Obstacle Proximity −λ10ReLU(1− mino∈Od(p⃗t ,o)
3

) λ10 = 1/3000

Trajectory Proximity* λ11ReLU(1− min⃗r∈R∥ p⃗t − r⃗∥2

5
) λ11 = 1/2000

to goal in x, y, and z; roll, pitch, and yaw rates; difference
between current heading and heading to goal) through two
fully-connected layers before being concatenated with the
depth image encoding and passed through two more fully-
connected layers. This yields a R256 feature vector which is
fed into the actor-critic module of the policy.

Actor-Critic Networks and Policy Optimizer As seen
in the Actor-Critic portion of Figure 2(a), both the actor and
critic networks take in the feature vector and pass it through
a LSTM layer with 64-dimensional hidden and memory
units. The actor/critic networks then pass the LSTM outputs
through two fully-connected layers (128, 32 neurons in actor
and 128, 64 neurons in critic) to obtain the action π(st) and
Q-value Qπ(st ,at). Note, that the policy outputs range from
[−1,1] and are multiplied by vx,max,vz,max,ωmax to obtain the
action at = {vt,x,vt,z,ωt}. During training, we use Proximal
Policy Optimization (PPO2) [21] to optimize the actor-critic
and state mixing networks while freezing the encoder.

Reward Function We define the beginning position of
the drone as p⃗0 and the desired heading of the drone as ζ =
arctan((gx − pt,x)/(gy− pt,y)). We use o ∈ O to represent the
set of all obstacles in the environment and r⃗ ∈ R to represent
the x,y,z positions of points on the optimal trajectory. We
define function d(p,o) to be the closest distance between an
obstacle o and position p⃗. We define h(a1,a2) to represent
the difference between two yaw angles a1 and a2 when
accounting for phase unwrapping. The reward for a state
transition R(st+1,st ,at) is calculated by adding the reward
terms using the definition shown in Table I. The parameters
λ1...11 ≥ 0 are empirically chosen weights. Intuitively, these
rewards terms reflect either proximity to a desired state (e.g.
distance to goal) or whether the agent is approaching a
desired state (e.g. velocity towards goal).

There are four possible terminal rewards/states: reached
goal (2.0), out of bounds (0.16), crashed (0.08), and time-

out (-1.0). Reached goal is triggered if the drone reaches
within 1.0m of the goal i.e. ∥⃗g − p⃗t∥2 ≤ 1.0. Crashed is
triggered if the drone is within 1.25m of an obstacle i.e.
mino∈Od(p⃗t ,o)≤ 1.25. Timeout is if the drone is still flying
for more than a maximum amount of time of 40 seconds i.e.
tmax ≤ t, tmax = 480. Lastly, the goal and start points form the
diagonal corners of a rectangle in the simulation xy frame
and if the drone flies more than 8m outside this rectangle
then it is considered to be out-of-bounds.

C. Simulation and Environments

Simulation Setup We use the open-source Flightmare
platform, specifically from the DodgeDrone ICRA 2022
Competition, which contains both a high-fidelity physics
engine for quadrotor dynamics simulation and a graphics
engine built on Unity that handles camera rendering [23].
The simulation cycle represented in Figure 2 is as follows:
the current drone state is used by the Unity module to
render the depth image view which is fed alongside the
state information into the RL policy which then outputs
velocity commands. The velocity commands are processed
by Flightmare’s built-in low-level controller to issue rotor
outputs, which the dynamics modeling engine then uses
to calculate the next drone state after a ∆t timestep. The
simulated dynamics are based on a 0.752kg Kingfisher drone.
The state is fed back into Unity and this loop continues at
a rate of 12 iterations per simulated second (∆t = 0.085).
During training, an environment with 150 independently
simulated drones is used to collect rollouts in parallel.

Environment Generation We generate two environment
types: privileged learning and curriculum environments. The
privileged learning environment consists of randomly placed
pillars with randomized start/end locations throughout. The
curriculum environment as depicted in the fine-tuning portion
of Figure 4 consist of three regions in increasing order of dif-
ficulty. Region 1 is a grid of clusters where a random number
of obstacles are placed within an inner circle and start/end
points are placed at varying radii in an outer circle. Region
2 consists of variable-length walls placed at random angles
with start/end points being placed randomly throughout at
a maximum of 40m away from each other. Region 3 has
variable-length walls being placed in rectangular sub-region
with start/end positions being placed on either side of each
sub-region. It is arranged so that the drone’s trajectory passes
orthogonal to the walls’ orientations (+/- some angle) and as
such is forced to make larger path adjustments to avoid them.

D. Training

We train our policy using the 3 steps visualized in Figure
4: trajectory planning, privileged learning, and fine-tuning.

Optimal Trajectory Planning Given the privileged learn-
ing environment, we use Unity to convert the environment
mesh into a 3D point cloud with a resolution of 0.15m. The
point cloud is fed into a hierarchical motion planner [15] that
generates a set of dynamically feasible optimal trajectories
for the given start/goal pairs.



Fig. 4. An overview of the 3 stages of the training pipeline. In (1), we generate trajectories using a motion planner with perfect environment knowledge
(3D Point Cloud). Then in (2), we train an initial policy in the pillar environment with the optimal trajectories as supervisory signal. Finally in (3), we
fine-tune the policy in the mixed curriculum environment without any optimal trajectories.

Privileged Learning with Trajectories We teach the
policy the basics of optimal time flight behavior in a simple
environment of spaced-out pillars. This is aided via privi-
leged learning whereby if the drone’s position at each time
step is near the optimal trajectory then it is given a reward.
This differs from distillation methods since we are not trying
to emulate the trajectories exactly, but rather they are a
guide that helps the policy converge by giving it intermediate
rewards. Furthermore, the position-based rewards rather than
action-based rewards means that the supervisory signal acts
more on the planning behavior rather than the control.

Fine-tuning in Curriculum Environment After a base
network is trained, we further train the policy in the more
complex curriculum environment –illustrated in Figure 4–
to teach the policy navigation strategies, to make it robust
to potential environment variations, and to prevent memo-
rization. Over the course of fine-tuning, we start off in the
easiest region (1) and gradually mix in start/goal pairs from
the harder regions (2/3) as training progresses. The reason
we do not use optimal trajectories during fine-tuning is that
the space of optimal trajectories is multi-modal (e.g. equally
valid to go right or left around a single obstacle). While
this effect is negligible with the simpler environments of
the privileged learning step, in the more complex curriculum
environment it is exacerbated since the range of near-optimal
trajectories is exponential, therefore meaning that rewards
for adhering to a particular trajectory is a poor signal that
actually impedes learning.

E. Bridging Sim2Real

To close the Sim2Real gap, we focus on improving the
policy’s noise robustness and action smoothness. The reason
for the former is intuitive – in the real-world there is noise
across the state and action space: noise in the depth image,
drift in the IMU/VIO measurements, randomness in latency,
errors in rotor control, etc. The intuition behind striving for
smoother policies is twofold. Firstly, while jerky movements
may be optimal in simulation with an idealized model of
flight dynamics, in the real-world they strain the rotors
and degrade control authority. Secondly, jerky movement
profiles do not generalize well to quadrotors with different
characteristics (moments of inertia, thrust maps, body drags,
etc.), thereby impeding zero-shot transfer.

Reward Shaping A key problem with using reference
velocities as an output is that we can not enforce trajectory
smoothness via methods such as interpolation. Thus, to dis-
courage high-frequency jerky commands, we apply penalties
to yaw rate magnitude, acceleration, and jerk. To discourage
low-frequency oscillations which lead to wavy motion, we
apply a reward if the drone is angled towards the goal and
if the its trajectory matches the smooth optimal trajectory.

Domain Randomization We apply a small amount of
normal noise (±2%) to positional state measurements and a
5×5 Gaussian Blur with a randomized σ in the interval [0.1,
0.7] to the depth input image. We have found empirically
that Gaussian Blur degradation most closely approximates
the type of noise encountered in real-world outdoor testing
where the long range (>20m) and variable lighting lead to
large variations in measurements near edges if the disparity
between the foreground and background depth is large. For
the action space, we apply normal noise (±5%) to the drone’s
simulated movement at each time step to emulate inaccu-
racies in control output and outdoor factors such as wind.
In addition, we also varied the flight dynamics parameters
such as mass and moments of inertia to simulate different
drone testbed characteristics. We also add a lag factor to
approximate system delays such as forward pass processing
time and publish-poll time differences between ROS nodes.

IV. EXPERIMENTS

A. Simulation Evaluation

We conduct a simulation study to analyze the policy’s
capabilities in a more elaborate environment than can be set
up in the real world. To do so, we conduct 4 experiments
across varying maximum speeds (vx,max) of 1.0m/s - 4.0m/s.
In each experiment, we measure the policy’s performance
over 1000 runs in an obstacle course randomly generated
with the same region types as the curriculum environment,
thereby capturing a variety of situations. Example trajectories
are shown in Figure 5. The success rate shown in Table II
stays relatively constant across 1.0 - 3.0m/s, however it drops
off at 4.0m/s due to the lower agility and decreased necessary
reaction time at higher speeds.



Fig. 5. Visualization of example simulation trials. Yellow is the start and
green is the goal.

TABLE II
SIMULATION OUTCOMES ACROSS MAXIMUM SPEEDS

Speed (vx,max) Success Crash Timeout Out of Bounds

1.0 m/s 992 8 0 0
2.0 m/s 985 13 1 1
3.0 m/s 989 10 1 0
4.0 m/s 967 28 5 2

B. Flight System Overview

All real-world tests are conducted on a DJI Matrice 300
RTK (6.3kg, 0.81m span) with additional mounted hardware
as seen in Figure 1. A Zed2i device with a stereo camera
and built-in IMU is used to collect 672 × 376 resolution
depth images and state estimates augmented by Visual In-
tertial Odometry (VIO). In the depth image, we remove any
measurements over 20m to account for the Zed2i’s maximum
effective range and under 0.2m to account for the rotor blades
being in view before downscaling to 192×108. The stereo
depth calculations and policy are run on a Jetson AGX Xavier
orchestrated with ROS. The policy interfaces with the drone
using DJI’s onboard SDK to send velocity commands. The
full pipeline, from the depth image capture to the command
being sent to the drone, runs at 12Hz. This system can ideally
be deployed on other drones given the proper mounting
hardware and software interface.

C. Real-World Experiments

To validate that the policy successfully transfers to the
real-world, we constructed 3 obstacle formations: wall, tri-
angle, and inverted triangle. Each consists of foam pillars
being positioned in different locations with the drone having
to navigate through them to reach the goal point. For each
environment, we test 3 different scenarios where the start and
goal point are in different locations relative to the obstacle
formation: left, center, and right. The environments and
scenarios are shown in Figure 7 and the results are shown in
Table III. For the first set of experiments with VIO device
positioning, we performed 2 trials for each combination of
scenario and environment for a total of 18 trials. During the
VIO trials, we only use VIO for navigation, however we

Fig. 6. Pictures of the actual testing environments at (a) Berkeley Marina
and (b) Hearst Mining Circle on the UC Berkeley campus.

still collect GNSS data for post-flight analysis as a form of
ground-truth positioning. We also performed a second set of
experiments with GNSS positioning of 2 trials for each of the
environments as shown in Figure 8 and Table IV. For VIO
trials the goal was relative to the drone’s starting orientation
e.g. +25m forward, whereas for GNSS trials the goal point
was a lat/long coordinate. A run is declared to be successful
if the drone stops within 1.0m of the goal as declared by
the positioning device used by the policy. The device for the
VIO trials is the Zed2i and the device for the GNSS trials
is GPS. All runs operate at a speed vx,max of 3.0 m/s.

The experiments occurred in two locations shown in
Figure 6: a field at Berkeley Marina and the Hearst Mining
courtyard on the UC Berkeley campus. The field was open
with no obstacles in view whereas the courtyard had uneven
terrain, a sculpture, a pond, and surrounding buildings/trees.
The GNSS experiments in Table IV were conducted in Hearst
Mining courtyard in addition to the 6 center scenario trials
for the VIO results of Table III, whose measurements are
italicized for reference. The remaining 12 VIO trials of Table
III were carried out in Berkeley Marina.

Beyond the new obstacle configurations themselves, the
system had to contend with multiple domain shifts to suc-
cessfully cross the Sim2Real gap. The most obvious one is
that the policy had never trained with the dynamics of a
DJI M300 and as such had to compensate for the different
flight characteristics. The environment scenery itself was
also substantially different from training with the sloped
terrain and clutter such as trees, a sculpture, light poles,
and buildings. There were out-of-distribution environmental
factors such as crosswinds reaching up to 14 kph and non-
ideal lighting conditions leading to additional sensor noise.
Lastly, the VIO positioning from the Zed2i was oftentimes
substantially inaccurate drifting up to 3m as evidenced by
GNSS measurements.

In spite of the aforementioned Sim2Real domain gaps, the
system achieved a high success rates across all 3 environ-
ments. The results can be seen in Figure 7 and Table III
where s[m/s] is average speed across the run as measured
by GNSS, t[s] is time from start to goal, and d[m] is actual
measured distance to goal. As seen in Table III, the success
rate across all environments and scenarios is 100% while
the average distance to goal is 2.27m averaged over all three
environments. This relatively large average distance to goal,
also shown in the discrepancy between the orange and blue
trajectories in Figure 7, are despite the fact that the VIO
device believes it is within 1.0 meter of the goal 100% of the
time. This reflects the positioning inaccuracy of the chosen
VIO device which fundamentally limits the drone’s ability
to accurately reach the end goal.

The drone had an average speed of 2.58m/s across the
trials which is close to the maximum speed limit of 3.0m/s,
especially when considering the acceleration phase at the
start and deceleration phase near the goal. This indicates that
the policy was aiming to achieve the highest possible speed
during the trials. To decouple the inaccuracy of the VIO
device from the performance of our policy, we conducted



Fig. 7. 3D visualization of 8 runs, labeled in the form of environment - scenario - trial. Depicted are also modified environments labeled as Tri - Mod
and Inv Tri - Mod which are described in the Discussion. The red pillars are the obstacles, the orange line is the GPS-measured trajectory, and the blue
line is VIO device measured trajectory. Note that the blue line may seem like it is passing through obstacles, however that is due to VIO’s inaccuracy.

TABLE III
VIO DEVICE POSITIONING TRIALS ACROSS ENVIRONMENT AND STARTING POSITION

Environment Scenario Trial 1 Trial 2 Trial Avg. Env Avg. Overall

s [m/s] t [s] d [m] s [m/s] t [s] d [m] s [m/s] t [s] d [m] Success [%] d [m] d̄ [m]

Wall
Left 2.53 8.95 2.90 2.63 8.98 2.40 2.58 8.97 2.65

100% (6/6) 2.65

2.27

Center 2.49 9.25 3.30 2.51 9.56 2.30 2.50 9.41 2.80
Right 2.46 9.33 1.90 2.54 9.00 3.10 2.50 9.17 2.50

Triangle
Left 2.54 8.99 1.05 2.58 9.05 1.85 2.56 9.02 1.40

100% (6/6) 1.95Center 2.61 9.26 1.90 2.59 9.23 2.10 2.60 9.25 2.00
Right 2.54 8.84 2.70 2.60 9.19 2.20 2.57 9.02 2.45

Inverted Triangle
Left 2.63 8.94 2.60 2.71 8.83 2.90 2.67 8.89 2.75

100% (6/6) 2.21Center 2.62 9.1 1.60 2.53 9.08 2.10 2.575 9.09 1.85
Right 2.55 9.28 1.10 2.83 8.07 3.00 2.69 8.68 2.05

TABLE IV
GNSS-POSITIONING TRIALS ACROSS ENVIRONMENTS

Environment Trial 1 Trial 2 Trial Avg. Overall

s [m/s] t [s] d [m] s [m/s] t [s] d [m] s [m/s] t [s] d [m] Success [%] d̄ [m]

Wall 2.67 8.26 1.30 2.58 8.45 0.80 2.63 8.36 1.05 100% (2/2)
0.81

Triangle 2.46 8.60 0.52 2.55 8.80 0.78 2.51 8.70 0.65 100% (2/2)

Inverted Triangle 2.56 8.34 0.60 2.60 8.46 0.84 2.58 8.40 0.72 100% (2/2)

Fig. 8. 3D visualization of GPS runs. Blue line is GPS-measured trajectory.

trials using GNSS for positioning. The results shown in
Figure 8 and Table IV indicate a 100% success rate and
an average distance to goal of 0.81 which is about 2.8 times
smaller than that of VIO device experiments.

D. Discussion and Conclusion

Overall, the key takeaway is that the system is able to
perform in largely out-of-distribution conditions. The policy
is able to both track a goal point and avoid obstacles in spite
of degraded state estimation. It is also able to generalize
from the simulation dynamics of a 0.7kg drone to a real-
world drone 10 times the weight at a total of 7kg, thereby
lending credence to the idea that robustly trained policies
can be combined with low-level drone controllers without
specific tuning. This is in contrast to [17] which tunes its
policy specifically for the dynamics of a custom-built drone.
These results can likely be attributed to the autoencoder



perception being trained on diverse environments and the
use of regularization/randomization to train the policy to be
robust to noise across the state-action space.

In addition to the standard trials, we built modified ver-
sions of the environments to test behavioral changes in
response to certain factors. For instance, as shown with ”Tri-
Mod” in Figure 7, we created a variation of the Triangle
environment where an additional obstacle was concealed
behind the first, positioned along the drone’s expected tra-
jectory. Upon encountering the hidden obstacle within its
field of view, the drone adapted its normal path to avoid
it. Similarly, we tested a modified version of the Inverted
Triangle environment shown with ”Inv Tri-Mod” in Figure 7,
reducing the gap from 6m to 3m to assess whether the drone
would avoid passages with insufficient clearance relative to
its size. As expected, the drone avoided the gap.

In terms of transferability to different hardware systems,
one of the benefits of a learning-based approach is the
extremely low computational cost of the policy itself. Our
system (stereo camera input to action command output) has
a latency of about 50ms. However, the policy including
all surrounding ROS processes is able to complete a pass
in only 1.5ms or about >600Hz on the Jetson GPU. The
primary bottleneck of our system is the Zed2i’s depth image
computation process which occurs off-device on the Jetson
and takes >90% of the latency i.e. 45ms. However, a depth
sensor with on-device depth computation such as the Intel
Realsense D435 or Luxonis OAK-D can result in a very fast
and compute efficient system.
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Vladlen Koltun, and Davide Scaramuzza. Learning high-speed flight
in the wild. Science Robotics, 6(59):eabg5810, 2021.

[18] Antonio Loquercio, Ana I. Maqueda, Carlos R. Del Blanco, and
Davide Scaramuzza. Dronet: Learning to fly by driving. IEEE Robotics
and Automation Letters, 3:1088–1095, 2018.

[19] Kimberly McGuire, Guido de Croon, Christophe De Wagter, Karl
Tuyls, and Hilbert Kappen. Efficient optical flow and stereo vision for
velocity estimation and obstacle avoidance on an autonomous pocket
drone. IEEE Robotics and Automation Letters, 2(2):1070–1076, 2017.

[20] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory genera-
tion and control for quadrotors. In 2011 IEEE international conference
on robotics and automation, pages 2520–2525. IEEE, 2011.

[21] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[22] Abhik Singla, Sindhu Padakandla, and Shalabh Bhatnagar. Memory-
based deep reinforcement learning for obstacle avoidance in uav with
limited environment knowledge. IEEE transactions on intelligent
transportation systems, 22(1):107–118, 2019.

[23] Yunlong Song, Elia Kaufmann, Leonard Bauersfeld, Antonio Loquer-
cio, and Davide. Scaramuzza. Icra 2022 dodgedrone challenge: Vision-
based agile drone flight. 2022.

[24] Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and
Davide Scaramuzza. Flightmare: A flexible quadrotor simulator. In
Conference on Robot Learning, pages 1147–1157. PMLR, 2021.

[25] Yunlong Song, Kexin Shi, Robert Penicka, and Davide Scaramuzza.
Learning perception-aware agile flight in cluttered environments. In
2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 1989–1995. IEEE, 2023.

[26] Vaibhav Viswanathan, Eric Dexheimer, Guanrui Li, Giuseppe Loianno,
Michael Kaess, and Sebastian Scherer. Efficient trajectory library
filtering for quadrotor flight in unknown environments. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2510–2517, 2020.

[27] Wei Xiao, Zhaohan Feng, Ziyu Zhou, Jian Sun, Gang Wang, and
Jie Chen. Time-optimal flight in cluttered environments via safe
reinforcement learning. arXiv preprint arXiv:2406.19646, 2024.

[28] Xin Yang, Jingyu Chen, Yuanjie Dang, Hongcheng Luo, Yuesheng
Tang, Chunyuan Liao, Peng Chen, and Kwang-Ting Cheng. Fast
depth prediction and obstacle avoidance on a monocular drone using
probabilistic convolutional neural network. IEEE Transactions on
Intelligent Transportation Systems, 22(1):156–167, 2019.

[29] Haokun Zheng, Sidhant Rajadnya, and Avideh Zakhor. Monocular
depth estimation for drone obstacle avoidance in indoor environments.
In 2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 10027–10034. IEEE, 2024.


