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ABSTRACT

A building’s window-to-wall ratio (WWR) has critical in-
fluence on heat loss, solar gain, and daylighting levels, with
implications for visual and thermal comfort as well as energy
performance. However, in contrast to characteristics such as
floor area, existing building WWRs are rarely available. In
this work we present a machine learning based approach to
parse windows from drone images and estimate the WWR.
Our approach is based on firstly extracting the building 3D
geometry from drone images, secondly performing seman-
tic segmentation to detect windows and finally computing the
WWR. Experiments show that our approach is effective in es-
timating WWR from drone images.

Index Terms— Deep learning, 3D geometry, semantic
segmentation, photogrammetry

1. INTRODUCTION

A building’s window-to-wall ratio (WWR) has critical influ-
ence on heat loss, solar gain, and daylighting levels, with
implications for visual and thermal comfort as well as en-
ergy performance. It is found that in different climates and
building orientations there are optimal WWRs that result in
improved operational performance. However, in contrast to
characteristics such as floor area, existing building WWRs are
rarely available. Estimating WWR from drone images for en-
ergy efficiency audits or other applications is a beneficial yet
challenging task of which the first step is parsing the windows
from the building facade. Building facade extraction from re-
mote imagery such as drones requires processing a variety of
images due to the variation of facades across different envi-
ronments, the changing illumination, visual perspective, the
presence of shading devices and other occlusions.

Our approach first uses photogrammetry to detect features
that are shared across images and uses them in conjunction
with GPS data to determine 3D points. These 3D points are
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projected into a 2D grid with grid cells corresponding to the
building facades having a very high point density. Secondly,
we train our own deep learning semantic segmentation model
to detect windows on 2D images. Finally, we take the facade
corner points of the extracted 3D building model, and project
them onto the RGB drone camera image that corresponds to
the input image with the detected windows. Once we have
the 3D coordinates for the window points, we compute the
WWR.

This paper is organized as follows. In Section 2 we de-
scribe previous work on the topic of parsing windows from
facades and estimation of WWR. Section 3 describes our ma-
chine learning based approach and Section 4 describes exper-
imental results from our approach. In Section 5 we conclude
with some recommendations for future work.

2. PREVIOUS WORK

Building facades extraction has been studied and various
methods that mostly operate on a per-pixel or super-pixel
level have been proposed in computer vision [1][2]. Other
methods [3], [4], [5] assume that building facades have an
appropriate shape grammar. This poses strong prior knowl-
edge on the facade of a building, but if the prior does not
apply, the methods fail. Recently, deep learning has shown
its power in various computer vision tasks, including image
segmentation [6][7] and has outperformed traditional vision
approaches in a lot of benchmarks. Schmitz et al. [8] use deep
learning and treat facade parsing as a general image segmen-
tation problem. In [9], the authors introduce laser scanning
and a slicing methodology for extracting overall facade and
window boundary points. Lee et al. [10],[11] combined in-
formation of line segments and calibrated facade to detect
and reconstruct the windows in 3D coordinates. In [12], au-
thors describe an approach to extract windows by analyzing
geometrical characteristics of building surface. In contrast to
these approaches, our approach is based on firstly extracting
the building 3D-geometry from drone images, secondly using
a deep learning model to perform semantic segmentation to
detect windows and finally computing the WWR.



3. APPROACH

3.1. Building 3D geometry extraction

In this section we will briefly describe the approach intro-
duced in [13] and which is used in this work to extract build-
ing 3D geometry from drone images. it is based on four steps
described bellow:

• Photogrammetry: The set of overlapping 2D RGB images
captured by the drone system are processed using a pho-
togrammetry software (i.e., Pix4D), which generates a set
of data points in 3D space. This is achieved by detecting
features that are shared across images and using them in
conjunction with GPS data to determine 3D points. This
set of data points in a 3D space is called a point cloud.
Pix4D uses a fully automated process to achieve accurate
3D reconstruction based on the 2D image sets.

• Projection of the 3D point clouds into a 2D space: After the
point cloud is extracted, the points in the cloud are projected
into a 2D grid (top-down view), with a resolution of 0.1
meter (m). This permits a count of the number of points
in a 0.1m x 0.1m area. As result, within this grid, the grid
cells corresponding to the building facades will have a very
high point density.

• Line Detection and polygonization: The Hough Transform
is applied to the resulting 2D grid. This is a well-known
method for detecting lines in an image, by converting an
image to “Hough space”. The extracted lines are further
refined by applying an algorithm that processes the lines
and extracts the segments that likely correspond to walls.
Once the line segments have been extracted, polygons are
constructed. As the line extraction process has various lim-
itations and likely either misses a wall or does not extract
the full line segment corresponding to a wall, an algorithm
is applied to complete the polygons by taking a set of edges
that would nearly form a polygon, and filling in the gaps.

• Merging polygons and height estimation: Once all the poly-
gons have been completed, the adjacent polygons are recur-
sively merged if they are close together in (average) height.
To compute the average height of the polygon, we compute
the average height of the points (from the 3D point cloud)
in each cell, and then average the heights of the cells. This
essentially “spreads out” the height computation across the
full area of the polygon, minimizing the effects of objects
that may lie on top of the roof.

3.2. Windows semantic segmentation

3.2.1. Dataset Creation

Few researchers have investigated image semantic segmenta-
tion of Unmanned Aerial Vehicle (UAV) or drone views of
building facades and thus public data sets of sufficient size

and diversity are lacking. We created our own unique dataset
of images with windows labeled to perform semantic segmen-
tation. This was important because UAV views of buildings
are very specific, as they are taken from different heights and
at different angles. The dataset comes from a variety of differ-
ent sources including the ECP dataset [14], eTRIMS dataset
[15] ISPRS dataset [16], as well as openly available drone
images. In total we gathered 290 RGB images of buildings
facades (i.e., street views and UAV views). ECP and eTRIMS
had windows labeled on the images, while the images from
ISPRS dataset and the drone openly available images did not
have any labels. We used supervisely1 which is a web tool to
label images. Some images had a very large resolution (1280
by 960), so we cropped them into smaller images of build-
ing facades and resized them into 512 by 512 pixels (which
is constrained by the considered neural network architecture
and the GPU memory). We divided this dataset into 250 im-
ages for training the model and 40 images for validating our
model. Note that the images in the validation process are from
buildings that are not included in the training data set (in order
to avoid a biased estimation of the accuracy).

To reduce over-fitting and to expand the number of im-
ages that cold be used for training, we employed a data-
augmentation strategy. Augmentation of data is a practice
in the deep learning community to create larger data sets for
model training, and it can often improve the accuracy of the
model. These new images are created by slightly changing
the original image. For instance, making a new image a little
brighter; cropping the original image; make a new image by
horizontally flipping it, etc.

3.2.2. Model Architecture

In this study we employed DeepLabv3+ model [7] as a deep
neural network semantic segmentation approach. This a state-
of-the-art method that uses an encoder-decoder network ar-
chitecture with atrous spatial pyramid pooling module to ex-
tract multi-scale contextual information by pooling features at
various resolution. In the encoder-decoder structure, the en-
coder module extracts abstract features from the input images
by gradually reducing the feature maps. The decoder module
is responsible for recovering spatial resolution and location
information by gradually up-sampling the feature maps. In
this work, the considered output stride was equal to 16, which
as was shown [17] to be the best trade-off between compu-
tational speed and accuracy. The output stride is the ratio of
input image spatial resolution to the final output of the en-
coder. In the decoder module the encoder features are first
bilinearly up-sampled by a factor of 4 and then concatenated
with the corresponding low-level features maps of the same
resolution from the encoder module. After the concatenation
a few 3 by 3 convolutions are applied to refine the features fol-
lowed by a bilinear up-sampling by a factor of 4. In this work,
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Fig. 1: Flowchart for the WWR extraction process.

Fig. 2: Triangulation of the projected facade points with the
facade in red and window in blue.

a pretrained (on ImageNet dataset [18]) ResNet-101 architec-
ture [19] was used as DeepLabv3+ network backbone. The
Adam (adaptive moment estimation) optimization algorithm
[20] was used with a starting learning rate set to 0.0001, the
exponential decay rate of the first moment was set to 0.9 and
the second moment to 0.999. The learning rate was decayed
every 25 epochs by a factor of two. The batch size was set to
16 and the number of epochs to 100.

To train the DeepLabv3+ network, a combination of two
loss functions were used, the cross-entropy loss function and
the Dice loss function. The cross-entropy loss is defined as:

LCE = −
∑
xi∈X

log(p(xi)) (1)

where X is the training sample, and and p(xi) is the pixel-
wise soft-max over the last DeepLabv3+ layer. The Dice loss
function for multiclass segmentation, also known as the gen-
eralized Dice loss [5], is defined as:

LDice = 1− 2

∑
c∈C

∑
xi∈X pc(xi)rc(xi)∑

c∈C
∑

xi∈X(pc(xi) + rc(xi)) + ε
(2)

where ε is a small value added for numerical stability (set to
10−6), C is the number of classes, rc is equal to 1 if the pixel
corresponds to class c and equal to 0 otherwise, pc is the soft-
max prediction for class c. Therefore, the loss function used
for training models in this work is defined as:

Ldicece = wCELCE + wDiceLDice (3)

where wCE and wDice are the weights to each component of
the loss function, and are both set to be 0.5 in this work.

3.3. Window-to-Wall Ratio Estimation

The extracted building 3D geometry and the detected win-
dows are used to extract the window-to-wall ratio (WWR). A

block diagram for the entire process is shown in Figure 1. For
this approach, we assume that windows have already been
detected on a 2D image as depicted in Figure 1(a), and we
simply wish to compute their areas in 3D along with the area
of their corresponding facades. To do so, we take the facade
corner points of the extracted 3D building model, and project
them onto the RGB drone camera image that corresponds to
the input image with the detected windows. This is shown in
Figure 1(b). The projective distance for each of the corners of
the facade is stored. This will be used to determine the order-
ing of the facades along the optical axis. An example for the
projection on one RGB image is shown in Figure 3(b).

We use a mask for the windows in a 2D image as in-
put. Then, for each facade projected and a corresponding im-
age, we determine whether the facade contains a window by
checking whether the window points lies within the projected
facade. Since we are not explicitly determining whether a fa-
cade is occluding another, a window may lie on many of the
projected facades, so we need choose the closest such facade
to the optical center to find the facade the windows actually
lie on. This is done by choosing the facade with the mini-
mum projective distance for the particular RGB image. Once
we have determined the correspondence between the facades
and their respective windows in 2D, we wish to use this in-
formation to back-project the windows into 3D and onto the
corresponding 3D facade. Since the facades could have an
arbitrary shape, especially the roof polygons, we perform a
triangulation of all the projected facade corners via Delau-
nay Triangulation in 2D, as shown in Figure 1(c). We then
determine the resulting triangles that each of the window ver-
tices lie within. This allows us to obtain the position of each
window point in barycentric coordinates, i.e. relative to the
facade corners, as depicted in Figure 2 where the example
window point W can be written in terms of the facade points
A,B and C with the equation:

W = αA+ βB + γC (4)

For α + β + γ = 1. Then, using the barycentric coordinates
of the window points, we can compute a position for the win-
dow points in 3D space, as shown in Figure 1(d). This is done
by plugging in the coordinates of the 3D facade points from
the 3D building model into the same barycentric equation,
i.e. replacing the 2D facade points A,B,C with the corre-
sponding 3D facade points, and using the same α, β, and γ.
Once we have the 3D coordinates for the window points we
can compute the window to wall ratio by simply calculating
the surface area of the facade using its 3D coordinates, along
with the surface area of each of its windows with their 3D
coordinates. This is shown in Figure 1(e).



4. EXPERIMENT

Deep semantic segmentation accuracy

Several DeepLabv3+ models were trained using several data
augmentation strategies. The most accurate was the one that
used both the pixel and the spatial augmentations (i.e., hori-
zontal flip). The accuracy of the selected model was evaluated
on the validation sample using F1 score and was equal to 0.81.

F1 =
2TP

2TP + FP + FN
(5)

where TP, FN and FP are respectively the true positive, the
false negative and the false positive.

Experiment dataset

We used an openly available dataset provided by Pix4D 2.
This data set is a collection of 85 drone images from an of-
fice building collected following a circular flight path. The
ground truth windows surfaces where measured using the 3D
model generated by photogrammetry and the measurement
tools provided by Pix4D.

Results

Using the 85 drone images and Pix4D photogrammetry soft-
ware a 3D point cloud was generated, and was used to extract
the building’s 3D geometry (see section 3.1). Figure 3(a)
shows a top down view of the the point cloud with the de-
tected building footprint. Figure 3(b) shows the projection of
the detected building’s 3D geometry on top of a drone image
at the East side of the building. For each side of the building
the drone image that has the most frontal view of the facade
was selected and used as an input to the trained DeepLabv3+
to generate windows masks. The segmentation accuracy of
each of these masks along the four facades are shown with the
F1 score in Table 1. One can see that only one of the 4 facade
has an accurate result in term of F1 score, which is mainly
due to the angle of view of the camera (i.e., drone and camera
position relative to the facade). Figure 3(c) show the east fa-
cade drone image overlaid with the detected windows mask,
and Figure 3(d) show the north facade with the corresponding
mask. It is clear that the angle of view of the camera from the
east facade provides a better view of the windows, which ex-
plains the more accurate results for this facade. Meanwhile,
for the northern facade the drone was too close to the build-
ing to capture a good view of the windows, especially for the
first two floors of the building. Similar issues are present for
the western and southern facades. WWR were estimated fol-
lowing the previously described method. Table 1 shows the
estimated WWR and the ground truth WWR (noted as WWR

2https://support.pix4d.com/hc/en-us/articles/360000235126-Example-
projects#label6

Table 1: Accuracy metrics

Facade F1 Score estimated WWR WWR
North 0.73 0.16 0.23
East 0.88 0.21 0.23
South 0.67 0.12 0.24
West 0.66 0.13 0.24

in the table). As expected, the most accurate results are ob-
tained for the east facade.

(a) (b)

(c) (d)

Fig. 3: (a) Top-down view of the point cloud with the detected
building footprint; (b) 3D building model projected onto a 2D
drone image, with roof polygon overlaid in blue and facades
in red; (c) an image of the eastern facade with the detected
windows overlaid in red; (d) an image of the northern facade
with the detected windows overlaid in red

5. CONCLUSIONS

We presented a novel machine learning approach to estimate
the WWR using drone imagery.We evaluated our semantic
segmentation model choices based on an F1 score and show
experimentally that our models can achieve accurate perfor-
mance, by comparing our estimated WWR with actual WWR
number. A limitation of our approach is that the accuracy of
the WWR depends on the drone and camera position relative
to the facade. In the future, this approach can be extended
for parsing additional building categories such as doors, bal-
conies and rooftop PV.
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[15] F. Korč and W. Förstner, “eTRIMS Image Database for
interpreting images of man-made scenes,” Tech. Rep.
TR-IGG-P-2009-01, April 2009.

[16] F Nex, F Remondino, M Gerke, H-J Przybilla,
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