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Abstract— The recent advent of widely available broadband Internet

access has resulted in an explosive growth of new video streaming ap-

plications and research into methods to efficiently support such appli-
cations over today’s Internet. Many approaches, including source and

channel coding techniques, have been proposed to deal with the delay,

loss, and time-varying characteristics of best-effort packet-switched net-
works. In this paper we present two class of techniques for such net-

works: the first set of techniques is designed for streaming to receivers

with bandwidth-limited last mile connections to the Internet, while the
second set explores techniques relying on path diversity to handle sit-

uations in which the path to the video source, and not the access link

itself, causes degradation in the quality of the video stream. We show
results of simulations and Internet experiments, demonstrating the ef-

fectiveness of the two techniques.

I. Introduction

From news clips on sites such as CNN.com, to video on de-
mand from MovieFlix [1], the current Internet offers a richer
multimedia experience than the past. The challenges of video
streaming over best-effort networks, including delay, packet
loss, and varying bandwidth, have led to several different ap-
proaches to efficiently support multimedia streaming applica-
tions. The source coding community has proposed layered
and error-resilient codecs [2], [3] to deal with the problems
of varying bandwidth, and packet loss respectively. Forward
Error Correction(FEC) [4], a channel coding technique, has
been proposed to reduce retransmission delay at the expense
of increased bandwidth utilization.

In this paper we present two sets of techniques designed
to deal with the problems mentioned above. We first focus
on streaming to receivers with bandwidth-limited access links,
running multiple concurrent networking applications. These
applications tend to compete for access link bandwidth and
may therefore interfere with streaming performance. Tradi-
tionally, streaming applications have used TCP-Friendly UDP
protocols, which must maintain fairness with all flows, in-
cluding these competing applications. However, by streaming
over TCP, it is possible to allow a user to break fairness, lo-
cally, among her own connections, and to reserve additional
bandwidth for high-priority streaming applications. In prior
work [5] we outlined a receiver-based bandwidth sharing sys-
tem (BWSS) for allocating the capacity of last mile bottlenecks
among different TCP connections, and demonstrated its util-
ity for video streaming [6]. We demonstrate that such a sys-
tem can actually provide better streaming performance than
congestion-aware UDP protocols.

Since the BWSS does not provide any benefits if the path
to the video source is a bottleneck, we discuss another class of
techniques which may be used to effectively handle such situa-
tions. In prior work, we have demonstrated the benefits of path
diversity for multimedia streaming over the Internet. Specifi-
cally, we have shown that streaming portions of a stream from
multiple concurrent sources offers benefits over streaming from
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a single host [7], and that this method may be combined with
FEC for additional benefits [8]. We have also demonstrated
that a single source may be combined with multiple relay nodes
to emulate multiple sources [9]. We provide a more detailed
discussion of these contributions in this paper.

The rest of the paper is organized as follows. In Section II
we discuss the BWSS and the benefits provided to receivers
with bandwidth-limited access links. In Section III we discuss
the different path diversity related techniques which may be
used to deal with undesirable network conditions on the path
from source to receiver. We conclude this paper in Section IV.

II. Case 1: Bandwidth-Limited Access Links

Standard TCP is unsuitable for streaming to bandwidth-
limited access links, since TCP shares the link capacity of bot-
tleneck links according to connection round-trip time (RTT).
Hence, since TCP is unaware of application or user prefer-
ences, a user’s low priority FTP connection may get much
more bandwidth than their high-priority video streaming ap-
plication. Our previously proposed BWSS addresses this short-
coming of TCP by allowing receivers to allocate link capacity
according to application priorities as specifed by the user. It
functions by adjusting the flow-control window advertised to
the sender, i.e. by controlling the receiver advertised window
for each connection. The essential idea behind the system is to
constrain the throughput of certain low-priority applications in
order to provide additional bandwidth, if possible, for higher-
priority flows as specified by the user’s preferences. A user is
allowed to set a minimal rate, a weight and a priority for each
connection, and the link capacity is allocated as follows: first
the minimal rate is provided to each connection in decreasing
order of priority, and then any remaining bandwidth is shared
according to application weight. A more detailed description
of the BWSS is provided in [5], [6].

A. Internet Experiments

In what follows, we will describe experimental results
demonstrating the effectiveness of BWSS in video streaming
applications over bandwidth-limited access links.

A.1 Experimental Setup

In all of our experiments, vonnegut, a machine located in
the eecs.berkeley.edu domain, serves as the receiving host. We
use the NIST Net [10] network emulation package to emulate
a slower Broadband connection, and limit the incoming link
to 960Kbps with an additional delay of 30ms, thus modeling a
1Mbps broadband access link.

All experiments involve a video source and two FTP sources
sending data to vonnegut. At some point during each exper-
iment, cross-traffic from another host in the eecs.berkeley.edu
domain is sent to vonnegut, creating congestion on the access-
link. The interfering cross traffic is a constant bit-rate (CBR)
UDP stream generated using the RUDE software package [11].
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Fig. 1. Comparison of video streaming using TCP and BWSS; (a) TCP bandwidth partition; (b) BWSS bandwidth partition; (c) Fraction of late packets. For

graphs (a) and (b), the top line is the total bandwidth, the dark solid line represents BWSS throughput, while the light dashed lines represent ftp throughput.
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Fig. 2. Comparison of SureStream streaming using (a) TCP, (b) UDP, and (c) TCP with BWSS; The top line in the graphs is the total bandwidth, the dark

solid line represents BWSS throughput, while the light dashed lines represent ftp throughput.

The throughput received by applications is measured by inter-
cepting read() system calls, and recording the timestamp and
size of the received packet. We perform 3 trials of each given
experiment and graph the average of these runs.

A.2 Results

The first experiment compares standard TCP against TCP
using the BWSS. We send video packets at a rate of
496Kbps in the form of 62 one kilobyte packets per second.
There are 2 concurrent ftp connections from vonnegut to
ftp10.freebsd.org and ftp12.freebsd.org along with the stream-
ing application. In addition, from t=30s to t=60s we generate
a 320Kbps interfering UDP cross-traffic stream. We assign
the following parameters for the BWSS to reflect user’s prefer-
ences: the video stream has the highest priority, a minimal rate
of 496Kbps and a weight of 0, while the ftp streams share the
remaining link capacity equally. As shown in Figure 1(a), when
congestion occurs, the video stream bandwidth is reduced in
the case of standard TCP. Meanwhile, as Figure 2(b) demon-
strates, the BWSS is able to reduce the bandwidth given to the
ftp connections to ensure the desired minimal rate for the video
stream. Finally, in Figure 2(c) we plot the fraction of packets
arriving past their playback deadline at the receiver as a func-
tion of the number of seconds of pre-buffering. As seen, the
fraction of late packets is considerably smaller in BWSS than
in regular TCP. This experiment demonstrates that standard
TCP alone is not good enough for efficient streaming.

We now demonstrate that streaming with TCP and the
BWSS can offer better performance than a congestion-adaptive
UDP protocol. We stream a trailer for the movie “The Lion
King” encoded in RealNetworks’s SureStream1 format, which
supports encoding a video stream at multiple rates and se-
lects the appropriate streaming rate based on client feed-

1SureStream, Helix Producer, Helix Universal Server and RealOne Player

area all trademarks of RealNetworks Inc.

back about network conditions. The trailer is encoded at
450Kbps, 350Kbps, 262Kbps, and 60Kbps. The TCP-friendly,
or congestion-adaptive in the case of SureStream, streaming
protocols must react to congestion by reducing the sending
rate regardless of whether congestion occurs within the net-
work, or at the user’s access link. Meanwhile, the BWSS is
aware of the other TCP connections on the user’s machine,
and is able to break the standard TCP fairness among these
flows, without adversely affecting external flows, in order to
provide additional bandwidth for high-priority streaming ap-
plications.

The detail of the experiment are as follows: the video
client used is the RealOne player for Linux, while the video
stream is generated from a host in the eecs.berkeley.edu do-
main running a basic version of the Helix Universal Server.
In addition, two concurrent ftp sessions to ftp12.freebsd.org
and ftp13.freebsd.org are initiated on the receiving host. A
240Kbps cross-traffic UDP stream is generated from t=60s to
t=100s in the experiment. The following parameters are used
for the BWSS to reflect user’s preferences: a minimum rate of
520Kbps for the video stream, and the remaining bandwidth is
shared equally between the ftp connections. As shown in Fig-
ure 2(a), standard TCP experiences bandwidth fluctuations
which prevent consistent streaming at 450Kbps. Furthermore,
the SureStream technology does not select a lower-rate video
encoding, resulting in many dropped frames and an overall
poor video experience for the user. Meanwhile, as Figure 2(b)
demonstrates, UDP streaming results in streaming at 350Kbps
until after congestion subsides, at which point the 450Kbps
encoding is chosen for streaming by the server. Finally, as
Figure 2(c) shows, using the BWSS results in streaming the
450Kbps encoding throughout the experiment. The BWSS al-
lows the user to break fairness among applications in order to
stream the highest quality video encoding possible.



III. Case 2: Large Bandwidth Access Link

Traditionally, media streaming over the Internet has been
accomplished using a single fixed route between the sender and
the receiver throughout the session. If the network is congested
along that route, video streaming could suffer from high loss
rate and jitter. In this section, we describe a new class of
techniques based on path diversity to combat packet loss and
insufficient bandwidth for media streaming over the Internet
for situations where the bottleneck is not at the last mile.

In the path diversity framework, either multiple senders co-
operate with each other to stream the media simultaneously on
separate routes at appropriate rates to the receiver, or a single
sender streams the media to the receiver using multiple routes
created via relay node. If the bandwidth bottleneck is not at
the last mile, multiple disjoint routes could potentially increase
the streaming throughput. It is also a diversification scheme in
that it combats unpredictability of congestion in the Internet.
If a particular route experiences congestion, the receiver can
redistribute streaming rates among other routes, and use FEC
to recover lost packets on one route from the received packets
on the other routes.

A. Path Diversity Protocol for Multiple Senders

Our transport protocol is a receiver-driven one in which, the
receiver coordinates transmissions from multiple senders based
on the information received from the senders. Each sender es-
timates and sends its round trip time to the receiver. The
receiver uses the estimated round trip times and its own es-
timates of senders’ loss rates to calculate the optimal sending
rate for each sender in such a way as to minimize the probabil-
ity of packet loss and satisfy the TCP-friendly constraint [12].
The receiver monitors variations in route conditions of each
sender in order to re-adjust rate distribution among senders.
When the receiver decides to change sending rates, it sends
an identical control packet to each sender. The control packet
contains the synchronization sequence number and the optimal
sending rates as calculated by the receiver for all senders. Us-
ing the specified sending rates and synchronization sequence
number, each sender runs a distributed packet partition al-
gorithm, to be described shortly, to determine the sender for
the next packet; this is done in such a way that every packet
is guaranteed to be sent by one and only one sender, and to
minimize the probability of late packets.

A.1 Rate Allocation Algorithm

The rate allocation algorithm is run at the receiver in order
to determine the optimal streaming rate for each sender. It
is based on two following observations. First, in bursty loss
environments, sending L/M bps on each of M channels results
in less bursty loss than sending all L bps on a single channel.
Second, FEC is more effective in uniform random loss environ-
ments than in bursty ones. Since Internet packet loss behavior
has been characterized as “bursty”’, intuitively, FEC is more
effective when packets are sent on multiple routes than on one
route to the receiver. Using two-state continuous time Markov
model for the Internet bursty packet loss behavior [13], our
rate allocation algorithm determines the sending rate on each
route in order to (a) minimize the irrecoverable loss proba-
bility, and (b) satisfy the TCP-friendly bandwidth constraints
[12]. The irrecoverable loss probability is the probability that
FEC is not able to recover the lost packets completely. For
Reed-Solomon code, this probability equals to the probability
of more than N −K per N packets are lost. The details of the

rate allocation algorithm can be found in [8].

A.2 Packet Partition Algorithm

After receiving the control packet from the receiver, each
sender immediately determines the next packet in the video
stream to be sent, using the packet partition algorithm. All
the senders simultaneously run this algorithm to ensure that no
two or more senders send the same video packet, all packets are
sent, and also to minimize the probability of packets arriving
late at the receiver. The algorithm can be described as follows.
Each sender receives control packet from the receiver through a
reliable protocol whenever the receiver determines there should
be a change in any of the sending rates. The control packet
contains the necessary information for every sender to com-
pute A(i, k), the time difference between the estimated receive
and playback time for kth packet. The basic idea in our packet
partition algorithm is that among all senders i = {1...N} , the
one that maximizes the time difference A(i, k) is chosen to send
kth packet. Hence, maximizing A(i, k) is equivalent to mini-
mizing the probability that the kth packet is late. The details
on estimating A(i, k) and other practical issues are described
in [7].

A.3 Internet Experiments

We have implemented an actual multiple sender path diver-
sity system that employs the rate allocation and packet par-
tition algorithms. We now demonstrate the effectiveness of
the optimal rate allocation scheme in reducing the number of
lost packets by performing three following experiments. In ex-
periment one, a sender at Purdue university streams a H.263
encoded video to a receiver at U.C. Berkeley at the rate of 200
packets per second. In experiment two, the same video is also
streamed at 200 packets per second from a sender at Sweden to
a receiver at U.C. Berkeley. In experiment three, both senders
at Sweden and Purdue universities simultaneously stream the
video to a receiver at U.C. Berkeley with the pre-computed op-
timal rates of 80 and 120 packets per second, respectively. In
all three experiments, the streamed H.263 video is 720kbps and
is packetized into 500 bytes packets protected by RS(100, 90)
code.

Figure 3 plots the number of lost packets per 100 for exper-
iments one, two, and three denoted with squares, circles, and
crosses, respectively. The points above horizontal line repre-
sent irrecoverable loss events. Since we are using RS(100, 90),
irrecoverable loss happens when there are more than 10 lost
packets per 100 sent packets. As seen, there are 5 instances
of irrecoverable loss for experiments one and two where only
one sender is used to stream video to receiver. On the other
hand, in experiment three where both senders at Sweden and
Purdue university stream video simultaneously to the receiver
at U.C. Berkeley, all the lost packets are successfully recovered
by FEC.
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Fig. 3. Actual Internet experiments showing the benefits of distributed
video streaming over conventional approach.



B. Path Diversity for Single Sender Case

Since multiple sender architecture cannot be used in inter-
active and live streaming applications, in this section, we de-
scribe the path diversity (PD) system in which multiple paths
are created via relay nodes [14]. The system consists a set of
participating nodes. At any instance, a node can act simulta-
neously as a receiver, a sender, or a relay node. A sender can
send video packets to the receiver using the default Internet
path or via a relay node which then forwards the video packets
to the receiver. By choosing an appropriate relay node, the
packets traverse an underlying physical path that is different
from the one used by default Internet path.

B.1 Redundant Path Selection

Our approach to redundant path selection is to use a sim-
ple, but suboptimal technique for selecting redundant path. In
particular, we argue that finding two paths with absolute low-
est loss rates for the proposed PD system may not be needed
in practice due to two reasons: (a) an active monitoring of
probing packets and maintaining the link state information as-
sociated with all the paths [14] increase complexity and hence
is not scalable; (b) sending packets on two paths with the ab-
solute lowest loss rates may not be necessary to achieve rea-
sonable performance in a PD system with appropriate FEC
protection level [9]. Using router’s names and round-trip link
delay between two nodes provided by Traceroute[15], the path
selection algorithm first finds a set of redundant paths that
are as disjoint as possible from the default path. Within this
set of redundant paths, it then selects the one that results in
minimum latency.

B.2 Simulation Results

For all the simulations, we use the Internet topology gen-
erator software Brite [16] to generate various flat and hierar-
chal Albert-Barabasi topologies with the numbers of nodes and
edges shown in Table I. Albert-Barabasi model has been shown
to approximate the Internet topology reasonably well [17][16].

Models No. Nodes No. Edges

Flat Albert-Barabasi 1500 2967

H-Albert-Barabasi I 1500 2997

H-Albert-Barabasi II 1500 4377

TABLE I

Information for various topologies

We observe that with 10% participating nodes, the proba-
bilities that the redundant and default paths sharing two or
fewer shared links for Flat Albert-Barabasi, Albert-Barabasi II,
and Albert-Barabasi I are roughly 100%, 90%, and 85%, respec-
tively. This indicates that a redundant path with few shared
links can be found with high probability, and hence PD system
can be deployed effectively.

We now use NS[18] to characterize the packet loss reduction
as a function of number of shared links between redundant and
default paths. In particular, the number of links for default
and redundant paths are set to 11 and 18 respectively. Each
link speed is 2Mbs with propagation delay of 4 milliseconds.
To simulate bursty packet loss, random exponential traffic is
generated at each link with the peak rate of 1.8Mbs, average
idle period of 8 seconds, and the burst period of 40 milliseconds.
The streaming rate is 800 kbps on a single route experiment
and 400 kbps for each route in two-route experiments. All
500-byte packets are protected using RS(30,27).

Figure 4 shows the ratio of the effective packet loss rate of
uni-path scheme to that of dual path scheme as a function of
number of shared links between them. The effective packet
loss rate is the ratio between the number of irrecoverable lost
packets to the total sent packets. As seen, the effective loss
rate for the single path scheme is more than 7 times that of
the path diversity scheme with completely disjoint redundant
and default paths. The performance of using path diversity
decreases as the number of shared links between the two paths
increases.
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IV. Conclusion

In this paper we have presented two techniques for efficient
streaming over best-effort packet switched networks, such as
the Internet, for situations when either the access link, or the
path to the video source, impede the quality of video stream-
ing.
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