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Abstract— Hexapod robots are potentially suitable for carry-
ing out tasks in cluttered environments since they are stable,
compact, and light weight. They also have multi-joint legs and
variable height bodies that make them good candidates for tasks
such as stairs climbing and squeezing under objects in a typical
home environment or an attic. Expanding on our previous work
on joist climbing in attics, we train a legged hexapod equipped
with a depth camera and visual inertial odometry (VIO) to
perform three tasks: climbing stairs, avoiding obstacles, and
squeezing under obstacles such as a table. Our policies are
trained with simulation data only and can be deployed on low-
cost hardware not requiring real-time joint state feedback. We
train our model in a teacher-student model with 2 phases:
In phase 1, we use reinforcement learning with access to
privileged information such as height maps and joint feedback.
In phase 2, we use supervised learning to distill the model into
one with access to only onboard observations, consisting of
egocentric depth images and robot pose captured by a tracking
VIO camera. By manipulating available privileged information,
constructing simulation terrains, and refining reward functions
during phase 1 training, we are able to train the robots with
skills that are robust in non-ideal physical environments. We
demonstrate successful sim-to-real transfer and achieve high
success rates across all three tasks in physical experiments.

I. INTRODUCTION

Lightweight legged robots are ideal platforms for navigat-
ing inside cluttered home environments in which the robot
has to get around big objects such as a refrigerators, squeeze
under low objects such as couches and beds, and climb over
staircases to get from one floor to the other. They can also be
useful in rough environments such as attics, which are full
of joists, and are uncomfortable and potentially dangerous
for workers to do air sealing and vacuuming before they
add insulation [1]. For example, since attics typically consist
of multiple rows of joist structures, a human worker could
easily fall through the attic floor and get seriously injured if
they step on the sheetrock between two joists by mistake.

There has been a significant amount of work on
quadrupeds and bipedal robot locomotion. In our prior work
[2], we developed methods to enable hexapods to climb

joists in harsh attic environment. In this work, we extend
our prior work to stair climbing, obstacle avoidance and
squeezing under objects for a hexapod robot. We focus on
hexapods for two main reasons. First, hexapod robots can be
more stable and lightweight than quadrupeds and humanoids
of similar size. Secondly, bipedal or quadruped robots are
often taller than hexapods and are therefore less suitable
for traversing tight spaces such as the corners of attics.
To facilitate the practical usage of robots in the retrofit
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Fig. 1: Physical and URDF of the robot. (a) The hexapod robot standing at
the reset position - roughly 37 cm tall. (b) The URDF of the hexapod.

business, it is important for legged locomotion controllers
to work with low-cost hardware. However, most existing
legged locomotion systems require high-end robots capable
of real-time sensing of joint states, which could ultimately
result in expensive hardware on the order of thousands if not
tens of thousands of dollars. For example, model predictive
control methods such as [3] require powerful computation
resources and real-time joint feedback from expensive robot
platforms and often compromise real-time performance when
incorporating more complex dynamics. Data-driven methods
such as [4] can work with limited computation resources and
are robust to a variety of perception failures but need fast
joint state feedback. Many low-cost robots are not equipped
with powerful onboard computation or real-time feedback
such as joint torque and angle that are accessible on more
expensive platforms. Meanwhile, humans without leg sensing
feedback when equipped with prosthetics can walk and
even participate in competitive sports with only egocentric
visual perception and a sense of body orientation [5]. In
this paper, we propose an end-to-end learning-based per-
ceptive controller for low-cost, sub-thousand-dollar hexapods
to autonomously climb over staircases, avoid obstacles and
squeeze under objects and demonstrate zero-shot sim-to-real
transfer in real environments. In addition to attics, these skill
sets are useful for robots to navigate inside homes full of
furniture which the robot has to get around, and squeeze
under obstacles and climb staircases to get from one floor
to the other. Our robot is a $600 SpiderPi robot with no
real time joint feedback manufactured by Hiwonder, shown
in Figure 1, equipped with an Intel L515 depth camera and
a T265 tracking camera with a customized camera mount.
Similar to the approach proposed in [2], we use a two-
stage teacher-student training procedure to learn models
that can work without real-time joint feedback: the first
stage involves Reinforcement Learning (RL) with access to
privileged observations and the second stage uses supervised
learning to distill the model using only onboard observations



including body pose and egocentric depth images. Since
optimal stair climbing, squeezing and obstacle avoidance
motions are fundamentally different from walking, we train
our controllers without human-defined prior gait knowledge,
guiding the models to explore task-appropriate motions.
Through extensive simulations and physical experiments we
show our low cost robot successfully learn the following
three skills and generalize across different terrains: (a) climb
up and down staircases with as many as 15 steps including
a landing pad ; (b) squeeze under objects that are low,
regardless of whether the objects are long or short; (c)
maneuver right and left around multiple obstacles without
scarping or touching them and continue walking in the same
direction it was headed before each obstacle. With proper
design of terrains, reward functions, and choice of privileged
information in simulation environment, our model is able to
learn a variety of control skills.

II. RELATED WORK

In this part, we focus on relevant prior works in two major
areas: (1) locomotion control for hexapods, quadrupeds, and
robots of other shapes; (2) reinforcement learning for stair
climbing, obstacle avoidance, and squeezing.

A. locomotion control

Prior works have focused on specific control methods to
achieve basic locomotion abilities in hexapod and quadruped
robots. Researchers have used two-layer Central Pattern Gen-
erator (CPG) networks and posture control strategies based
on Force Distribution and Compensation to enable robot
locomotion across a variety of terrains [6]. In our previous
work, we successfully enabled the hexapod to climb over
joist terrains using a teacher-student model and actor/critic
reinforcement learning strategy [2].

Deep Reinforcement Learning (DRL) has become a
promising approach for developing autonomous and complex
behaviors in real world systems. Many researchers choose
to test the performance of their systems in simulation envi-
ronments before applying them to real-world applications.
However, the sim-to-real gap poses significant challenges
in transferring simulated learning to real-world applications
[7], [8]. Solutions such as system identification, domain
randomization, domain adaptation, imitation learning, meta-
learning, transfer learning, and knowledge distillation have
shown promise in narrowing this gap, enabling more effec-
tive deployment of robotic systems in physical environments
[7], [9]–[11]. Rizzardo proposed a sim-to-real technique
that trains a Soft-Actor Critic agent together with a decou-
pled feature extractor and a latent-space dynamics model,
enabling transferring without retraining or fine-tuning [8].
Tiboni introduced DROPO, a novel method for estimat-
ing domain randomization distributions for safe sim-to-real
transfer [12].

Model-free reinforcement learning has emerged as a piv-
otal approach for achieving different locomotion tasks, such
as hopping and crawling, in various environments, both

terrestrial and aquatic, barriers or gaps [13]–[19]. Special net-
work designs have been introduced to facilitate the training
of the locomotion policy. [16] proposed learning low-level
motion from a biological dog first and then learning high-
level tasks in order to save training time. All these policies
were combined into a single framework, allowing the robot to
autonomously select and execute the appropriate policy. [18]
used two-layer structure, a visual navigation layer to output
the angular velocity commands and a visual locomotion layer
to control quadruped robots to step over scattered ground to
the destination. [19] proposed a hierarchical structure with a
high-level vision policy and a low-level motion controller to
enable a quadrupedal robot to traverse uneven environments.

B. Reinforcement learning

In order to show the efficacy of the policy employed on the
robot, physical experiments are imperative. Traditional meth-
ods such as dynamic window approach (DWA) [20] are effec-
tive in avoiding obstacles robotics. Actor-critic reinforcement
learning-based avoidance methods have been used to enable
robots to avoid scattered obstacles [21], [22]. [23] proposed
training ANYmal robots with reinforcement learning in sim-
ulation and deployed the policy to run in challenging natural
environments. [24] presents an approach to teach quadruped
robot to adapt and conquer unseen environments with a
base policy and adaption module. Researchers introduced
a general DRL framework for obstacle avoidance, and a
manipulability index into the reward function in order to
avoid joint singularity while executing tasks [25]. The FAM-
HGNN framework, which relies on an attention mechanism
within a heterogeneous graph neural network, presents a
novel solution for the obstacle avoidance problem in RL.
This approach surpasses the performance of both multi-layer
perceptron-based and existing GNN-based RL methods [26].

With regards to squeezing, researchers enabled the re-
configurable robot RSTAR to squeeze through two adjacent
obstacles, duck underneath an obstacle and climb over an
obstacle using Q learning algorithm [27].

In tasks involving climbing stairs, both Deep Deterministic
Policy Gradients (DDPG) and Trust Region Policy Opti-
mization (TRPO) were evaluated, with the latter showing
superior performance [28]. Researchers used sim-to-real RL
to achieve climbing by only modifying an existing flat-
terrain training framework to include stair-like terrain ran-
domization, without any changes in reward function [29]. Re-
searchers also performed experiments on enabling different
articulated, tracked robots [30] and assistive robots [31] to
climb on slopes or stairs using machine Learning techniques.

III. METHODOLOGY

We aim to train the robot to climb up/down stairs, avoid
obstacles, and squeeze under objects. For each task, we train
the corresponding policy in simulation using Isaac Gym, then
directly deploy the trained policy onto the robot, which is
equipped with an Intel RealSense Tracking Camera T265
for pose estimation and an L515 for depth estimation. Each
task requires a different terrain construction, reward function,



Reward Term Expression Joist Climbing Stair Climbing Obstacle Avoidance Obstacle Squeezing
Linear velocity in global x (forward) clip(vx, min = −0.4, max = 0.4) 12 12 12 12

Linear velocity in body y (left/right) v2y −11 −11 −11 −11

Global heading θ2 −31 0 0 0
Angular velocity: yaw ω2 −10 0 −10 -10

Ground impact ∥ft − ft−1∥2 −1−1 0 0 0
Collision penalty 1{coxa, femur, or base contacting terrain} −10 0 −30 −10

Action rate ∥at − at−1∥2 −5−1 −5−1 −5−1 −5−1

Action magnitude ∥at∥2 −1−2 0 −1−2 −1−2

Torques ∥τ∥2 −1−3 0 −1−3 −1−2

Joint acceleration ˆ̈q2 =
q̇t−q̇t−1

∆t

2
−1−5 −1−5 −1−5 −1−5

Joint limit penalty clip(qt − qmin, max = 0) + clip(qt − qmax, min = 0) −10 −10 −10 −10

End effector height ∥zend effector∥ −1−1 0 0 0
Global y deviation ∥ycurrent − ystart∥2 0 −12 −10 −10

Distance to obstacle (front) f(H) 0 0 −1−1 0
Distance to obstacle (above) f(H) 0 0 0 −1−1

TABLE I: Reward function terms and their corresponding weights for different tasks. The definition of the top 12 reward terms are in [2].

Fig. 2: High-level overview of training methodology [2]

Fig. 3: Simulation environment in Isaac Gym. (a) Stairs Climbing. (b)
Obstacle Avoidance. (c) Squeezing under obstacles.

and camera angle, as shown in Tables I and II. We adopt a
2-stage student-teacher model shown in Figure 2, similar to
[2] in which the teacher policy is trained with privileged

information such as joint feedback and height map shown as
the yellow pad in Figure 3, and is transferred to a student
policy that takes in pose estimation and depth images as
visual input using supervised learning. In the teacher model
training, even though different tasks are trained with different
reward terms, sizes of height map, and terrain constructions,
they are each distilled to a policy that takes depth map of size
320 × 240 as visual input. During training, we control our
robot by directly predicting the joint angles of the robot and
applying them to the corresponding joints. The angles range
from [-120, 120] degrees. Each joint is initialized to a resting
position provided by the manufacturer as shown in Figure 1.

The entire training process takes approximately 10 hours
for the teacher policy and 5 hours for the student policy
on an RTX TITAN GPU. The reward terms and weights
for each of the four tasks, joist climbing, stairs climbing,
obstacle avoidance, and squeezing, are shown in Table I.
Different tasks require different number of training iterations
to converge, as seen in the reward convergence curve shown

Fig. 4: Reward vs. episode convergence curve for tasks. (a) Stairs Climbing.
(b) Obstacle avoidance. (c) Squeezing under obstacles.

in Figure 4. As seen, the squeezing task converges in 10
times fewer episodes than the other two tasks. During model
deployment, we take the depth image and pose estimation
from our visual odometry system as input to our policy and
output the joint angles for each of the 18 joints. We then
send signals to each servo to set them to desired angles.

The optimal camera angle for different tasks is shown in
Table II. Other than squeezing, which requires the optical
axis of the camera to be parallel to the horizon, all other tasks
work well with a 30-degree downward-looking inclination.
This is to be expected since the robot has to look “up” rather
than “down” to see the obstacle above it, when it is squeezing
under an object.

Height map size and location for different tasks are also
shown in Table II. The latter refers to the distance of height
map from the front of the robot. We have empirically found
obstacle avoidance to need a larger height map to be further
away from the robot than joist climbing and stair climbing.

A. Stair climbing

We trained the robot to climb up and down staircases
according to the 2-step teacher-student method described
earlier. We deployed curriculum training in order to help
the robot climb more challenging staircases by first learning
easier ones. In particular, we let the riser heights increase



Task Camera Angle (degrees) Height map size (m) Height map location (m)

Joist Climbing 30 0.6× 0.8 0.3
Stairs Climbing 30 0.6× 0.8 0.3
Obstacle Avoidance 30 0.6× 1.0 0.6
Squeezing under Obstacles 0 0.6× 0.8 0

TABLE II: Optimal camera angle and height map for each task.

from 4.5 cm to 18 cm and the tread depth decrease from
30 cm to 18 cm as the level of difficulty increases in
curriculum training. In addition, we randomized tread depth
in a given staircase in simulation to improve generalization
of our policy.

The weight of the reward term in the third row from the
bottom in Table I is an order of magnitude larger for stair
climbing than the other tasks. The main motivation for this is
to keep the robot from unnecessarily deviating to the right or
left as it climbs up a staircase. Intuitively this term minimizes
the lateral deviation of the robot from the direction of the
axis it was pointed before it starts climbing. We empirically
found that the 30° tilt angle for the depth camera works well
for both climbing up and down staircases.

B. Obstacle avoidance

Even though traditional methods such as DWA [20] work
well in obstacle avoidance, since our eventual goal is to
combine the different RL skills into one, we will also
develop an RL based policy for obstacle avoidance. The most
straightforward way to teach the robot to avoid collisions is
by minimizing collisions between the robot’s femur, coxa,
and body during simulation, assigning large negative rewards
when such collisions occur. This is shown as the “Collision
Penalty” in Table I and indicates the number of collisions,
whereby a collision is defined as an event with contact force
larger than a certain force threshold. We have empirically
found that such a method results in the robot scraping by and
touching obstacles as it tries to avoid them. To circumvent
that, we use a reward term shown in the one to the last row
of Table I given by:

R(H) = −
M∑
i=1

 N∑
j=1

h′
ij · −→w1j

 · −→w2i

where h′
i,j is the (i, j)th element of the binarized height

map M ×N matrix H ′ given by:

h′
ij =

{
1 if hij > 0

0 otherwise

hij is the (i, j)th element of the M ×N matrix height map
matrix H , and −→w1 is an N dimensional weight vector of
dimension N of a triangular shape given by:

−→w1 =

[
1, 1 +

2

N
, 1 +

4

N
, . . . , 2, . . . , 1 +

4

N
, 1 +

2

N
, 1

]
corresponding to the perpendicular distance of the points in
the binarized height map to the axis parallel to the direction
of the movement of the robot passing through its center. w2

is an M dimensional weight vector of the shape of a ramp

Fig. 5: Physical design of a squeezing environment.

ranging from 1 to 2, providing more weight to the obstacle
points closer to the front of the robot given by:

−→w2 =

[
1, 1 +

1

M
, 1 +

2

M
, . . . , 2

]
For the terrain in simulation, we included a variety of

obstacle shapes in the map. We also note that if the obstacles
are densely placed on the map at the beginning stages of
the training, the policy likely converges to a local maximum
reward and ends early. This is because of the sudden large
penalty generated from distance to obstacle reward term.
Thus, we incorporate curriculum training where the robot
first learns to walk without any obstacles and then to avoid
sparsely placed obstacles followed by a more dense obstacle
terrain. The density ranges of each level of difficulty is
given by (2×Level/Total Levels)×Densityfinal, where
the Densityfinal is defined as the density of the obstacle
spacing in the final difficulty level.

The obstacle avoidance functionality provided by the man-
ufacturer of our robot uses ultrasound to sense obstacles and
change direction accordingly, but it never goes back to its
original orientation as seen in this video link. In contrast,
we ideally want our obstacle avoidance functionality to have
the robot revert back to its original orientation after it avoids
a given obstacle. To achieve this, we use a combination of
global y deviation term and a local y velocity term where the
y axis is perpendicular to the direction the robot is headed
and moving along before it reacts to an obstacle. Global y
deviation term, shown in third to the last row of Table I,
indicates the distance between the robot and the y axis. The
local y velocity term shown in row 2 refers to the square
velocity along the y direction. The latter term prevents the
robot from going back to the original direction of motion too
soon due to not having the obstacle in its field of view after
the initial turn.

C. Squeezing under obstacles

Squeezing under objects is an important skill to learn
in traversing environments with low objects such as beds,
couches, and tables. We mainly care about two aspects in the

https://www.youtube.com/shorts/irWzEnhbGC0


design of the squeezing terrain; obstacle height and ’tunnel
length’ as defined in Figure 5. We aim to make the robot
learn such a skill and generalize to obstacles of varied shapes
and ’tunnels’ with varied lengths.

Since Isaac Gym does not support floating terrains and
requires everything to be grounded, we modified the code to
construct terrains on vertices ’in the air’. In the simulation
environment, we created a floating obstacle above the basic
terrain shown in Figure 3(c) to mimic the effect of a physical
table, bed, or couch. The height map used in phase 1 of
the training in simulation, takes on the ground level height
when there is no obstacle above and the obstacle’s height
otherwise. We then define a single reward term, shown in
the last row of Table I, to maximize the distance between
the robot’s body to the obstacle when there’s an obstacle
above and maximize the distance between the robot’s body
to the ground otherwise. Concretely, the reward is defined as
follows:

R(H) = −
N∑
i=1

 M∑
j=1

h′′
ij · −→w3j

 · −→w4i

where h′′
ij is a function of the height map hij and the distance

of the base robot to the ground, b, as follows:

h′′
ij =

{
1 if (hij − b) > 0

−2 · |hij − b| otherwise

−→w3 is a N dimensional vector of all ones, and −→w4 is an M
dimensional ramp vector ranging from 1 to 2 to assign a
larger weight to the obstacle points closer to the front of the
robot given by:

−→w4 =

[
1, 1 +

1

N
, 1 +

2

N
, . . . , 2

]
We use curriculum learning so that the robot first learns

to walk and then squeeze under the obstacles. The level of
difficulty increases as we decrease the object distance to the
ground from 37 to 35 to 33 and to 31 cm. The obstacle
itself can have variable height in the vertical direction as
seen in Figures 8(a) and 8(b), and variable length or width.
The longer the obstacle is, the longer the robot has to squeeze
to avoid hitting it while it squeezes underneath. These three
parameters are randomly chosen across all levels since they
do not reflect the difficulty of the task. We also randomize
the origin so that in simulation the robot reaches the obstacle
after walking different distances. Finally, the optical axis of
the depth camera is parallel to the ground so that it can
clearly see the beginning and the end of the “tunnel” created
by the obstacle.

IV. PHYSICAL EXPERIMENTS

We run the policies trained in simulation on a Raspberry
Pi processor placed on the physical robot. We conducted
experiments on all three tasks to verify and characterize
the performance of our policies in real-world environments.
For the staircase, we used three sets on the campus of
U.C. Berkeley and for the other two tasks we constructed

Fig. 6: Experiments Scene for stairs climbing. The first number is the riser
height and the second number is the tread depth both in centimeters.

several terrains to evaluate the performance of the robot by
measuring its success rate in completing tasks.

A. Stair climbing

We chose three staircases on the U.C. Berkeley campus,
as shown in Figure 6, to evaluate the robot’s performance in
both climbing up and descending tasks. In Figure 5, Cory
Hall and Soda Hall each had 7 steps and Sutardjai Hall had
8 steps. At the start of each experiment, the robot is placed
20 cm in the front of the stairs and is reset to its default
standing position shown in Figure 1. We interrupt only if
the robot falls over or is stuck on a stair.

We evaluated performance by counting the number of
steps the robot could complete in each trial. We then average
that number across 10 trials as shown in Table III. As seen,
Soda Hall has the highest success rate because it has the
lowest rise and the highest tread. Few of the climbing up
failure cases resulted from the robot falling over. Others
resulted from the robot getting stuck on the last stair for
too long, where it believes it is walking on a plane ground
as the camera image is not showing any stairs. For climbing
down stairs, the failure cases come from the robot losing
control and falling down. We present a video link showing
the robot climbing two sets of stairs separated by a platform,
with 8 and 7 steps in the first and second sets respectively. As
seen in the video, the robot is able to traverse in a relatively
straight line in the center without too much lateral shift to
right or left. The video also shows the robot climbing down
stairs with our policy compared to a baseline walking policy
where it is trained to walk on a flat terrain environment. As
expected, applying the ”walk” policy to the staircase results
in the robot crashing down the stairs.

https://youtu.be/Z22-K-4Pe6E


Climbing Up (Stairs completed/total stairs) Climbing Down (Stairs completed/total stairs)

Method Cory Stairs Soda Stairs Sudardja Cory Stairs Soda Stairs Sudardja

Perceptive (Ours) 6.0/7.0 7.0/7.0 7.6/8.0 6.6/7.0 7.0/7.0 7.5/8.0

TABLE III: Stair climbing performance.

Single Box A Box and A Bag Single Person Standing Single Person Moving

Method success scrape collision success scrape collision success scrape collision success scrape collision

Perceptive (Ours) 7/10 2/10 1/10 9/10 1/10 0/10 7/10 2/10 1/10 8/10 1/10 1/10

TABLE IV: Object avoidance performance.

Fig. 7: Obstacle Avoidance Environment.

B. Avoiding obstacles

We constructed a variety of obstacle scenarios to evaluate
the robot’s obstacle avoidance performance. We test the
robot’s generalization ability to detect arbitrary shapes of
obstacles and to avoid robustly. We design a total of four
environments. The first one consists of a single box-shaped
obstacle placed in front of the robot. The second consists of
two obstacles: a box-shaped obstacle placed in front and a
deformable plastic bag placed behind it. The third consists
of a person standing/sitting in front of the robot. The fourth
consists of a person walking towards the robot. We test each
of the environments 10 times, with our results in Table IV.
We group the outcome into three cases: success, scrape, and
collision. Success means the robot can navigate around the
obstacle without any collision, and scrape means the robot
is able to go around the obstacle but with some leg scraping
the objects/person, and collide means the robot runs into
the object. For the failure cases, the robot often detects the
objects, but reacts too slowly with the back leg scraping
the objects after the front part successfully avoids it. In
success cases, the robot exhibits avoidance behavior both to
the left and right depending on its distance to each side of the
obstacle. This indicates our policy did not merely memorize
to avoid objects by always veering to one direction. After
passing the obstacle, the robot rotates back to its original
orientation and keeps moving forward. Finally, we did a
comprehensive test on the robot’s ability to avoid all six
of our tested’s obstacles in a row as shown in Figure 7 and
visualized in this video link.

C. Squeezing under obstacles

The squeezing setup shown in Figure 8, aims to mimic
obstacles such as a couch, a bed, or a table. At the beginning
of the experiment, the robot is positioned 30 cm in front of
the obstacle. It is tasked to squeeze under the object and

Fig. 8: Experiments Scene for Squeezing. (a) Metal rod as obstacle without
tunnel. (b) Lengthy tunnel. (c) Paper block as obstacle without tunnel. (d)
Paper block as obstacle with tunnel.

walk in the squeezed mode until it gets out of the “tunnel”
created by the overhead obstacle at which time it is expected
to raise its body to the default height and continue walking.
The experiment is considered a success if the robot is able to
cross the tunnel without any collisions1. Our experimental set
up for squeezing is shown in Figure 8 with the dimensions
superimposed on the pictures. In Figures 8(a), 8(c) and 8(d)
there are a pair of metal rods that are 4” or 10.20 cm apart.
The end of the rods are plugged into two boards with holes
on a one inch grid. In Figures 8(c) and 8(d) there are paper
pieces connecting the two rods, creating a different depth
image from Figure 8(a) during inference and hence testing
the generalizability of our policy. Finally, there is a wood
board in Figures 8(b) and 8(d) creating a tunnel of length
129.1 cm to ensure the robot can be in the squeeze position
for an extended time. As a reference, the robot is 28.75
cm high when laying flat and 37 cm high when standing
in the reset standing position shown in Figure 1. While we

1Collisions are visually detected and defined as events where contact
between the robot and obstacles results in a trajectory change.

https://youtu.be/tbSoOhQQsJk


Fig. 9: Squeezing under two consecutive obstacles.

acknowledge that the height of the robot in the squeezing
position is still too large, our main goal is to demonstrate
the concept of teaching the robot to squeeze when needed.
For each of the four settings shown in Figure 8, we repeat
10 to 20 trials and present the success rate in Table V.

Terrain Success Rate % Success

Metal rod w/o tunnel (a) 17/20 85%
Lengthy tunnel (b) 10/10 100%
Block w/o tunnel (c) 18/20 90%
Block with tunnel (d) 9/10 90%

TABLE V: Squeezing performance with corresponding construction in
Figure 8.

As seen, the success rate is high2. While the robot can
instantaneously squeeze as low as 31.75 cm to go under a
thin metal rod, it cannot sustain that height for an extended
distance of say 129 cm without hitting the tunnel roof.
However, it can sustain the squeeze posture for a 34.29 cm
tunnel of Figure 8(b). The support boards on the side have
grid hole spacing of an inch; as such we can only move the
rods one inch at a time in the vertical direction, resulting in
a ”jump” from 31.75 to 34.29 cm height. We speculate that
the robot can successfully go through a tunnel of height 33
cm without scraping the top.

In one experiment as shown in Figure 9 where there are
two sets of obstacles of height 31.75 cm and no tunnel in
between, we notice that the robot squeezes under the first
obstacle, rises up shortly during the middle, squeezes again
under the second obstacle upon sensing it, and finally stands
up to walk away. We present a video demonstration of this
experiment in this link. As seen in the video, the ”belly” of
the robot comes close to the ground as it squeezes under the
obstacles and raises up afterwards. The plot in Figure 10
shows the change in the height of the robot’s base relative
to the ground, as captured in simulation.

2We have empirically found that the failure rate for all three tasks
increases when the battery is low and the supplied voltage is around 10
rather than the nominal 12 volts.

Fig. 10: Height of robot body vs. rollout step in Isaac Gym.

V. LIMITATIONS

One limitation of our approach is the requirement for
different camera angles for climbing stairs and squeezing
under objects. Switching policies on the go would thus
present a bottleneck. Also, for squeezing under objects,
although we have demonstrated the ability to generalize and
to detect different shapes of objects and lengths of tunnels,
the overall height of the system limits its performance to
squeeze under extremely short obstacles such as a couch. The
hexapod itself is quite short but the payload with the depth
camera is too tall in the current system and limits the size of
the objects it can squeeze under. In future work, we aim to
incorporate an adjustable camera setup that extends upwards
when the robot walks and downwards when it squeezes. We
also need to change the camera angle between 0 and 30
degrees in the process.

VI. CONCLUSIONS

In this work, we trained a hexapod robot to climb up/down
stairs, avoid obstacles, and squeeze under objects using
only a depth camera and a visual inertial odometry sensor.
We demonstrated the robot’s ability to perform these tasks
effectively through rigorous physical experiments. Future
work consists of creating one universal policy combining all
three tasks.
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