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Abstract

We present a novel lossless compression algorithm called Context Copy
Combinatorial Code (C4), which integrates the advantages of two very dis-
parate compression techniques: context-based modeling and Lempel-Ziv
(LZ) style copying. While the algorithm can be applied to many lossless
compression applications, such as document image compression, our pri-
mary target application has been lossless compression of integrated circuit
layout image data. These images contain a heterogeneous mix of data:
densce repetitive data better suited to LZ-style coding, and less densc struc-
tured data, better suited to context based encoding. As part of C4, we
have developed a novel binary entropy coding technique called combinato-
rial coding which is simultaneously as efficient as arithmetic coding, and as
fast as Huffman coding. Compression results show C4 outperforms JBIG,
Z1P, BZIP2, and 2D-LZ, and achicves lossless compression ratios greater
than 22 for binary layout image data, and greater than 14 for grey-pixel
image data.
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Figure 1.1: A sample of binary layout image data.

1.1 Introduction

For a next-generation 45-nm lithography system, using 25 nm, 5-bit grey
pixels, a typical image of only one layer of a 2ecm x lem chip represents
1.6 terabits of data. A direct-write maskless lithography system with the
same specifications requires data transfer rates of 10 terabits per second in
order to meet the current industry production throughput of one wafer per
layer per minute [1]. These enormous data sizes, and data transfer rates,
motivate the application of lossless data compression to VLSI layout data.

VLSI designs produced by microchip designers consist of multiple layers
of 2-D polygons stacked vertically, representing wires, transistors, etc. For
pixel-based lithography writers, each layer is converted to a 2-D image.
Pixels may be binary or grey depending on the design of the writer. A
sample of such an image is shown in Figure 1.1.

These lithography images differ from natural or even document images
in several important ways. They are synthetically generated, highly struc-
tured, follow a rigid set of design rules, and contain highly repetitive regions
cells of common structure.

Our previous experiments [2, 3] have shown that Lempel-Ziv (LZ) style
copying [4], used in ZIP, results in high compression ratios on dense, repet-
itive circuits, such as arrays of memory cclls. However, where these rep-
etitions do not exist, such as control logic circuits, LZ-copying does not
perform as well. In contrast, context-based prediction [5], used in JBIG
[6], captures the local structure of lithography data, resulting in good com-
pression ratios on non-repetitive circuits, but it fails to take advantage of
repetitions, where they exist.

We have combined the advantages of LZ-copying and JBIG context-
modeling into a new lossless image compression technique called Context
Copy Combinatorial Coding (C4). C4 is a single compression technique
which performs well for all types of layout: repetitive, non-repetitive, or
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a heterogeneous mix of both. In addition, we have developed hierarchical
combinatorial coding (HCC) as a low-complexity alternative entropy coding
technique to arithmetic coding [7] to be used within C4.

Section 1.2 describes the overall structure of C4. Section 1.3 describes
the context-based prediction model used in C4. Section 1.4 describes LZ-
copying in two dimensions and how the C4 encoder segments the image
into regions using LZ-copying and context-based prediction. Section 1.5
describes HCC used to code prediction errors. Section 1.6 describes the
extension of C4 to grey-pixel layout image data. Section 1.7 includes the
compression results of C4 in comparison to other existing compression tech-
niques for integrated circuit layout data.

1.2 Overview of C4

The basic concept underlying C4 compression is to integrate the advantages
of two disparate compression techniques: local context-based prediction
and LZ-style copying. This is accomplished by automatic segmentation of
the image into copy regions and prediction regions. FEach pixel inside a
copy region is copied from a pixel preceding it in raster-scan order. Each
pixel inside a prediction region, i.e. not contained in any copy region,
is predicted from its local context. However, neither predicted values nor
copied values are 100% correct, so error bits are used to indicate the position
of these prediction or copy errors. These error bits can be compressed
using any binary entropy coder, but in C4, we apply our own hierarchical
combinatorial coding (HCC) technique as a low-complexity alternative to
arithmetic coding. Only the copy regions and compressed error bits are
transmitted to the decoder.

In addition, for our application to direct-write maskless lithography, the
C4 decoding algorithm must be implemented in hardware as a parallel array
of thousands of C4 decoders fabricated on the same integrated-circuit chip
as a massively parallel array of writers [3]. As such, the C4 decoder must
have a low implementation complexity. In contrast, the C4 encoder is under
no such complexity constraint. This basic asymmetry in thc complexity
requirement between encoding and decoding is central to the design of the
C4 algorithm.

Figure 1.2 shows a high-level block diagram of the C4 encoder and de-
coder for binary layout images. First, a prediction error image is generated
from the layout, using a simple 3-pixel context-based prediction model.
Next, the resulting error image is used to determine the segmentation map
between copy regions and the prediction region, i.e. the set of pixels not
contained in any copy region. As specified by the segmentation map, the
Predict/Copy block estimates each pixel value, either by copying or by pre-
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Figure 1.2: Block diagram of C4 encoder and decoder for binary images.

diction. The result is compared to the actual valuc in the layout image.
Correctly predicted or copied pixels are indicated with a “0”, and incor-
rectly predicted or copied pixels are indicated with a “1”, equivalent to a
Boolean XOR operation. These error bits are compressed without loss by
the HCC encoder, which are transmitted to the decoder, along with the
segmentation map.

The decoder mirrors the encoder, but skips the complex steps neces-
sary to find the segmentation map, which are received from the encoder.
Again as specified by the segmentation, the Predict/Copy block estimates
each pixel value, either by copying or by prediction. The HCC decoder
decompresses the error bits from the encoder. If the error bit is “0” the
prediction or copy is correct, and if the error bit is “1” the prediction or
copy 1is incorrect and must be inverted, equivalent to a Boolean XOR op-
eration. Since there is no data modeling performed in the C4 decoder, it is
considerably simpler to implement than the encoder, satisfying one of the
requirements of our application domain.

1.3 Context-based Prediction Model

For our application domain, i.e. integrated-circuit layout compression, we
choose a simple 3-pixel binary context-based prediction model to use in
C4, much simpler that the 10-pixel model used in JBIG. Nonetheless, it
captures the essential “Manhattan” structure of layout data, as well as
some design rules, as seen in Table 1.1.
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Table 1.1: The 3-pixel contexts, prediction, and the empirical prediction error
probability for a sample layout

Context | Prediction | Error | Error probability
_| :H 0.0055

o m |E o

5. 0.039

" -1

g "

I n 0.022

E m ﬂ 0.037

—r . E 0.0031

The pixels used to predict the current coded pixel are the ones above,
left, and above-left of the current pixel. The first column shows the 8 pos-
sible 3-pixel contexts, the second column shows the prediction, the third
column shows what a prediction error represents, and the fourth column
shows the empirical prediction error probability for an example layout.
From these results, it is clear that the prediction mechanism works ex-
tremely well; visual inspection of the prediction error image reveals that
prediction errors primarily occur at the corners in the layout. The two
exceptional 0% error cases in rows 5 and 6 represent design rule viola-
tions. To generate the prediction error image, each correctly predicted
pixel is marked with a “0”, and each incorrectly predicted pixel is marked
with a “1”, creating a binary image which can be compressed with a stan-
dard binary entropy coder. The fewer the number of incorrect predictions,
the higher the compression ratio achieved. An example of non-repetitive
layout for which prediction works well is shown in Figure 1.3(a), and its
corresponding prediction error image is shown in Figure 1.3(b).

In contrast to the non-repetitive layout shown in Figure 1.3(a), some
layout image data contains regions that are visually “dense” and repeti-
tive. An example of such a region is shown in Figure 1.4(a). This visual
“denseness” results in a dense, large number of prediction errors as seen
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(a)

Figure 1.3: Non-repetitive layout image data and its resulting prediction error
image.

Figure 1.4: Dense repetitive layout image data and its resulting prediction error
image.
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Figure 1.5: Tllustration of a copy left region.
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clearly in the prediction error image in Figure 1.4(b).

The high density of prediction errors translates into low compression
ratios using prediction alonc. In C4, areas of dense repetitive layout are
covered by copy regions to reduce the number of errors, as described in
Section 1.4.

1.4 Copy Regions and Segmentation

As seen in Figure 1.4(a) of the previous section, some layout images are
highly repetitive. We can take advantage of this repetitiveness to achicve
compression by specifying copy regions, i.e. a rectangular region that is
copied from another rectangular region preceding it in raster-scan order.
In the remainder of this section, we describe the procedure the C4 encoder
uses to find these copy regions.

An example of a copy region is shown in the dashed rectangle in Figure
1.5. As seen, a copy region is specified with six copy parameters: position
of the upper left corner x,y, width w, height h, distance to the left to copy
from dx, and distance above to copy from dy. For the copy region in Figure
1.5, every pixel inside the region is copied from dx pixels to its left, and
dy = 0. Although the entire region is copied, the copy itself need not be
100% correct. Similar to the prediction error map, there is a corresponding
copy error map within the copy region. Each correctly copied pixel is
indicated with a “0”, and cach incorrectly copied pixel is marked with a
“1”, creating a binary sub-image which can be compressed with a standard
binary entropy coder.
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As described in Section 1.2, the C4 encoder automatically segments
the image into copy regions and the prediction region, i.e. all pixels not
contained in any copy region. Each copy region has its own copy parameters
and corresponding copy error map, and the background prediction region
has a corresponding prediction error map. Together, the error maps merge
to form a combined binary prediction/copy error map of the entire image,
which is compressed using hierarchical combinatorial coding (HCC) as a
binary entropy coder. The lower the number of the total sum of prediction
and copy errors, the higher the compression ratio achieved. However, this
improvement in compression by the introduction of copy regions, is offset
by the cost in bits to specify the copy parameters (z,y, w, h,dz,dy) of
each copy region. Moreover, copy regions that overlap with each other are
undesirable: each pixel should only be coded once, to save as many bits as
possible.

Ideally, we would like the C4 encoder to find the set of non-overlapping
copy regions, which minimizes the sum of number of compressed predic-
tion/copy error bits, plus the number of bits necessary to specify the pa-
rameters of each copy region. An exhaustive search over this space would
involve going over all possible non-overlapping copy region sets, a combi-
natorial problem, generating the error bits for each set, and performing
HCC compression on the error bits. This is clearly infeasible. To make the
problem tractable, a number of simplifying assumptions and approximate
metrics are adopted.

First we use entropy as a heuristic to estimate the number of bits gen-
erated by the HCC encoder to represent error pixels. If p denotes the
percentage of prediction/copy error pixels over the entire image, then error
pixels are assigned a per-pixel cost of C' = —loga(p) bits, and correctly
predicted or copied pixels are assigned a per-pixel cost of —logs(1 —p) ~ 0.
Of course, given a segmentation map, p can be easily calculated by count-
ing the number of prediction/copy error bits; at the same time, p affects
how copy regions are generated in the first place, as discussed shortly. In
C4, we solve this chicken and egg problem by first guessing a value of p,
finding a segmentation map using this value, counting the percentage of
prediction/copy error pixels, and using this percentage as a new value for
p as input to the segmentation algorithm. This process can be iterated
until the guess p matches the percentage of error pixels, but in practice
we find that one iteration is sufficient if the starting guess is reasonable.
Empirically, we have found a good starting guess to be the percentage of
error pixels when no copy regions are used, then discounted by a constant
factor, e.g. a factor of 4.

Next, for any given copy region, we compare the cost, in bits, of coding
that region using copy, versus the cost of coding the region using prediction.
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If the cost of copying is lower, then the amount by which it is lower is the
bene fit of using this region. The cost of copying is defined as the sum of
the cost of describing the copy parameters, plus the cost of coding the copy
error map. For our particular application domain, the description cost is 51
bits. Here we have restricted @, y, w, h to 10-bits cach which is rcasonable
for our 1024 x 1024 test images. In addition, we assume that copies are
either from above, or to the left, so (dz, dy) is replaced by (left/above,d)
and represented with 11 bits, where d, represented by 10 bits, denotes the
distance left or above to copy [rom, and left/above, represented by 1 bit,
denotes the direction left or above to copy from. This assumption is in
line with the Manhattan structure of layout data. The cost of coding the
copy error map is estimated as C' X Eqp,, where C' denotes the estimated
per-pixel cost of an error pixel, as discussed previously, and E,,,, denotes
the number of copy error pixels in the region. Correctly copied pixels are
assumed to have 0 cost, as discussed previously. So the total cost of copying
is 51 4+ C X Egppy.

The cost of coding the region using prediction is the cost of coding
the prediction error map of that region. It is estimated as C' X E.ontent »
where F.onier: denotes the number of prediction error pixels in the region.
Finally, the benefit of a region is the difference between these two costs,
C X (Econtext — Eeopy) — 51 . Note that it is possible for a region to have
negative benefit if Eoontect — Eeopy < (51/C). The threshold T = (51/C)
is used to quickly disqualify potential copy regions in the scarch algorithm
presented below.

Using benefit as a metric, the optimization goal is to find the set non-
overlapping copy regions, which maximizes the sum of benefit over all
regions. This search space is combinatorial in size, so exhaustive search is
prohibitively complex. Instcad we adopt a greedy approach, similar to that
used in the 2D-LZ algorithm described in [3]. The basic strategy used by
the find copy regions algorithm in Figure 1.2 is as follows: start with an
empty list of copy regions; and in raster-scan order, add copy regions of
maximum benelit, that do not overlap with regions previously added to the
list. The completed list of copy regions is the segmentation of the layout. A
detailed flow diagram of the find copy regions algorithm is shown in Figure
1.6, and described in the remainder of this section.

In raster-scan order, we iterate through all possible (z,y). If (z,y) is
inside any region in the segmentation list, we move on to the next (z,y);
otherwise, we iterate through all possible (left/above,d). Next for a given
(z,y,left/above, d), we maximize the size of the copy region (w, h) with the
constraint that a stop pizel is not encountered; we define a stop pizel to be
any pixel inside a region in the segmentation list, or any pixel with a copy
error. These conditions prevent overlap of copy regions, and prevent the
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Figurc 1.7: Illustration of three maximum copy regions bordered by four stop
pixels.

occurrence of copy errors, respectively. Later, we describe how to relax this
latter condition to allow for copy errors. The process of finding maximum
size copy regions (w,h), is discussed in the next paragraph. Finally, we
compute the benefit of all the maximum sized copy regions, and, if any
region with positive benefit exists, we add the one with the highest positive
benefit to the segmentation list.

We now describe the process of finding the maximum size copy re-
gion (w,h). For any given (z,y,left/above,d) there is actually a set of
maximum size copy regions, bordered by stop pixels, because (w, h) is a
two-dimensional quantity. This is illustrated in the example in Figure 1.7.
In the figure, the position of the stop pixels are marked with ® and three
overlapping maximum copy regions are shown (z,y,wi,hy) (z,y, wa, ho)
and (z,y, ws, hs). The values wy, hy, wa, ha, ws, and hz are found using
the following procedure: initialize w = 1, h = 1. Increment w until a stop
pixel is encountered; at this point w = wy. Next increment &, and for each
h increment w from 1 to wy, until a stop pixel is encountered; at this point
h = hi1, and w = ws. Again increment h, and for each h increment w from
1 to wy, until a stop pixel is encountered; at this point A = hg, and w = ws.
Finally, increment h, and for cach h increment w from 1 to w3, until a stop
pixel is encountered; at this point 2 = hsz, and w = 1. The maximum size
algorithm is terminated when a stop pixel is encountered at w = 1.

As stated previously, any pixel inside a region in the segmentation list,
and any pixel with a copy error, is a stop pizel. The latter condition
prevents any copy errors inside a copy region. We relax this condition to
merge smaller, error free, copy regions, into larger copy regions with a few
number of copy errors. The basic premise is to tradeoff the 51-bits necessary
to describe a new copy region against the introduction of bits needed to
codce copy errors, by excluding some copy error pixels from being stop pizels.
For each copy error pixel, we look at a window of W pixels in a row, where
the left most pixel is the copy error. If, in that window, the number of copy
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errors is less than the average number of errors expected, E.op, < Wp, and
the number of copy errors is less than the number of prediction errors,
Eopy < Fpredict, then pixel with the copy error no longer considered to be
a stop pixel. The size of the look-ahead window W is a user-defined input
parameter to the C4 algorithm. Larger values of W correspond to fewer,
larger copy regions, at the expense of increasing the number of copy errors.

1.5 Hierarchical Combinatorial Coding

We have proposed and developed combinatorial coding (CC) [7] as an al-
ternative to arithmetic coding to encode the error bits in Figure 2. The
basis for CC is universal enumerative coding [8] which works as follows.
For any binary sequence of known length N, let k& denote the number of
ones in that sequence. k ranges from 0 to IV, and can be encoded using a
minimal binary code [11], i.e. a simple Huffman code for uniform distribu-
tions, using [loga(N +1)] bits. There are exactly C(N, k) = N!/(N —k)!k!
sequences of length N with & ones, which can be hypothetically listed. The
index of our sequence in this list, known as the ordinal or rank, is an integer
ranging from 1 to C(N, k), which can again be encoded using a minimal
binary code, using [logsC(N, k)]bits. Enumerative coding is theoretically
shown to be optimal [8] if the bits to be compressed are independently
and identically distributed (i.i.d.) as Bernoulli(f) where 8 denotes the
unknown probability that “1” occurs, which in C4, corresponds to the per-
centage of error pixels in the prediction/copy error map. The drawback of
computing an enumerative code directly is its complexity: the algorithm
to find the rank corresponding to a particular binary sequence of length N,
called ranking in the literature, is O(N) in time, is O(N?) in memory, and
requires O(N) bit precision arithmetic [8].

In CC, this problem is addressed by first dividing the bit sequence into
blocks of fixed size M. For today’s 32-bit architecture computers, M = 32
is a convenient and efficient choice. Enumerative coding is then applied
separately to cach block, generating a (k, rank) pair for cach block. Again,
using the same assumption that input bits are i.i.d. as Bernoulli(), the
number of ones k in a block of M bits are i.i.d. as Binomial(M,8). Even
though the parameter 8 is unknown, as long as the Binomial distribution is
not too skewed, e.g. 0.01 < 8 < 0.99, a dynamic Huffman code efficiently
compresses the k-values with little overhead, because the range of k is small.
Given there are k ones in a block of M bits, the rank remains uniformly
distributed, as in enumerative coding. Therefore, rank-values are efficiently
coded using a minimum binary code.

The efficiency of CC, as described, is on par with arithmetic coding,
except in cases of extremely skewed distributions, e.g. € < 0.01. In these
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Figure 1.8: 2-level HCC with a block size M = 4 for each level.

cases, the probability that £ = 0 approaches 1 for each block, causing the
Huffman code to be inefficient. To address this issue, we have developed an
extension to CC called hierarchical combinatorial coding (HCC). Tt works
by binarizing sequence of k-valucs such that & = 0 is indicated with a
“0” and k = 1 to 32 is indicated with a “17. CC is then applied to the
binarized sequence of “0” and “1”, and the value of k, ranging from 1 to 32
in the “1” case, is Huffman coded. Clearly, this procedure of CC encoding,
binarizing the k-values, then CC encoding again can be recursively applied
in a hicrarchical fashion, to take care of any inefficiencies in the Huffman
codce for k-values, as 8 approaches 0.

Figure 1.8 is an example of HCC in action with 2-levels of hierarchy and
block size M = 4. Only valucs in bold italics are coded and transmitted to
the decoder. Looking at rows from bottom to top, the original data is in
the lowest row labeled “bits — level 0”. Applying CC with M = 4, the next
two rows show the rank and k value for each block in level 0. Note that
when k& = 0 no rank value is needed as indicated by the hyphen. The high
frequency of 0 in “k — level 07 makes it inefficient for coding directly using
Huffman coding. Instead, we binarize “k — level 07, to form “bits — level
1”7, using the binarization procedure described in the previous paragraph.
CC is recursively applied to “bits — level 1”7, to compute “rank — level 1”
and “k — level 17. Finally, to code the data, “k — level 1”7 is coded using
a Huffman code, “rank — level 1”7 is coded using a minimal binary code,
non-zero values of “k —level 07 are coded using a Huffman code, and “rank
— level 0”7 is coded using a minimal binary code.

The rationale for choosing Huffman coding and minimal binary coding
is the same as CC. If the input is assumed to be i.i.d. as Bernoulli(6),
all level rank-values are uniformly distributed, given the corresponding k-
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values in the same level. Furthermore, although the exact distribution of
k-values is unknown, a dynamic Huffman code can adapt to the distribution
with little overhead, because the dynamic range of k& is small. Finally, for
highly skewed distributions of &, which hurts the compression efficiency of
Huffman coding, the binarization process reduces the skew by removing the
most probable symbol & = 0.

Studying the example in Figure 1.8, we can intuitively understand the
efficiency of HCC: the single Huffman coded 0 in “k —level 17 decodes to
M? zeroes in “bits — level 07, In general, for L-level HCC, a single Huffman
coded 0 in level L — 1 corresponds to M zeroes in “bits - level 07. HCC’s
ability to effectively compress blocks of zeroes is critical to achieving high
compression ratios, when the percentage of the error pixels is low.

In addition to achieving efficient compression, HCC also has scveral
properties favorable to our application domain. First, the decoder is ex-
tremely simple to implement: the Huffman code tables are small because
the range of k-values is small, unranking is accomplished with a simple
table lookup, comparator, and adder, and minimal binary decoding is also
accomplished by a simple table lookup and an adder. Second, the de-
coder is fast: blocks of MZ+D zeroes can be decoded instantly when a
zero is encountered at level I.. Third, HCC is easily parallelizable: block
sizes are fixed and block boundaries are independent of the data, so the
compressed bitstream can be easily partitioned and distributed to multiple
parallel HCC decoders. This is in contrast to run-length coding schemes
such as Golomb codes [9], which also code for runs of zeroes, but have
data-dependent block boundaries.

Independent of our development of HCC, a similar technique called
Hicrarchical Enumerative Coding (HEC) has been developed in [10]. The
main difference between HEC and HCC is the method of coding & values
at each level. HCC uses binarization and simple Huffman coding, whereas
HEC uses hierarchical integer enumerative coding, which is more complex
[10]. In addition, HEC requires more levels of hierarchy to achieve the same
level of compression efficiency as HCC. Consequently, HCC is significantly
less complex to compute than HEC.

To compare HCC with existing entropy coding techniques, we apply 3-
pixel context based prediction as described in Section 1.3 to a 242 kb layout
image and generate 8 binary streams. We then apply Huffman coding to
blocks of 8-bits, arithmetic coding, Golomb run-length coding, HEC, and
HCC to each binary stream, and report the compression ratio obtained by
each algorithm. In addition, we report the encoding and decoding times
as a measure for complexity of these algorithms. The results are shown in
Table 1.2.

Among these techniques, HCC is one of the most efficient in terms of
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Table 1.2: Result of 3-pixel context based binary image compression on a 242 kb
layout image for a P3 800 MHz processor

Metric Huf8 | Arith. | Golomb | HEC | HCC
Comp. ratio | 7.1 47 49 48 49
Enc. time(s) | 0.99 | 7.46 0.52 2.43 | 0.54
Dec. time(s) | 0.75 | 10.19 | 0.60 2.11 0.56
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Figure 1.9: Block diagram of C4 encoder and decoder for grey-pixel images.

compression, and one of the fastest to encode and decode, justifying its use
in C4. The only algorithm comparable in both efficiency and speed, among
those tested, is Golomb run-length coding. However, as previously men-
tioned, HCC has fixed, data-independent block boundaries, which are ad-
vantageous for parallel hardware implementations; run-length coding does
not. Run-times are reported for 100 iterations on an 800 MHz Pentium
All algorithms are written in C# and optimized with
the assistance of VTune to eliminate bottlenecks. The arithmetic coding
algorithm is based on that described in [11].

IIT workstation.
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Figurc 1.10: 3-pixel linear prediction with saturation used in grey-pixel C4.

1.6 Extension to Grey Pixels

So [ar, C4 as described is a binary image compression technique. To extend
C4 to encode 5-bit grey-pixel layout image, slight modifications nced to be
made to the prediction mechanism, and the representation of the error.
Specifically, the local 3-pixel context based prediction described in Section
3, is replaced by 3-pixel linear prediction with saturation, to be described
later; furthermore, in places of prediction or copy error, where the error
bit is 717, an error value indicates the correct value of that pixel. A block
diagram of the C4 encoder and decoder for grey-pixel images is shown in
Figure 1.9.

First, a prediction error image is generated from the layout, using a
simple 3-pixel linear prediction model. The error image is a binary image,
where “0” denotes a correctly predicted grey-pixel value and “1” denotes a
prediction error. The copy regions are found as before in binary C4, with no
change in the algorithm. As specified by the copy regions, the Predict/Copy
generates pixel values cither using copying or lincar prediction. The result
is compared to the actual valuce in the layout image. Correctly predicted or
copied pixels are indicated with a “0”, and incorrectly predicted or copied
pixels are indicated with a “1” with an error value generated indicating the
true value of the pixel. The error bits are compressed with a HCC encoder,
and the actual error values are compressed with a Huffman encoder.

As in binary C4, the grey-pixel C4 decoder mirrors the encoder, but
skips the complex steps necessary to find the copy regions. The Pre-
dict/Copy block generates pixel values cither using copying or lincar pre-
diction according to the copy regions. The HCC decoder decodes the error
bits, and the Huffman decoder decodes the error values. If the error bit
is “0” the prediction or copy is correct, and if the error bit is “1” the
prediction or copy is incorrect and the actual pixel value is the error value.

The linear prediction mechanism used in grey-pixel C4 is analogous to
the context-hased prediction used in binary C4. Each pixel is predicted
from its 3-pixel neighborhood as shown in Figure 1.10. “?” is predicted as
a linear combination of its local 3-pixel neighborhood “a”, “b”, and “c”.
If the prediction value is negative or exceeds the maximum allowed pixel
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value max, the result is clipped to 0 or max respectively. Interestingly, this
linear predictor can also be applied to a binary image by setting maz =1,
resulting in the same predicted values as binary context-based prediction
described in Section 3. Tt is also similar to the median predictor used in
JPEG-LS [13].

1.7 Compression Results

Table 1.3: Compression ratios of JBIG, ZIP, 2D-LZ, BZTP2 and C4 for 2048 x 2048
binary layout image data.

Type | Layer | JBIG | ZIP | 2D-LZ | BZIP2 | C4
Mem. | M2 59 88 233 260 332
Cells | M1 10 48 79 56 90
Poly | 12 51 120 83 141
Ctrl. | M2 47 22 26 32 50
Logic | M1 20 11 11 11 22
Poly | 42 19 20 23 45

We apply a suite of existing and general lossless compression techniques
as well as C4 to binary layout image data. Compression results are listed
in Table 1.3. The original data are 2048 x 2048 binary images with 300 nm
pixels sampled from an industry microprocessor layout, which corresponds
to a 0.61 mm by 0.61 mm section, covering about 0.1% of thc chip area.
Each entry in the table corresponds to the compression ratio for one such
image.

The first column “Type” indicates where the sample comes from, mem-
ory, control, or a mixture of the two. Memory circuits are typically ex-
tremely dense but highly repetitive. In contrast, control circuits are highly
irregular, but typically much less dense. The second column “Layer” in-
dicates which layer of the chip the image comes from. Poly and Mectall
layers are typically the densest, and mostly correspond to wire routing and
formation of transistors. The remaining columns from left to right are
compression ratios achieved by: JBIG, ZIP, 2D-LZ our 2D extension to the
LZ77 copying [3], BZIP2 based on the Burrows-Wheeler Transform [12],
and C4. The bold numbers indicate the highest compression for cach row.

As seen, C4 outperforms all these algorithms for all types of layouts.
This is significant, because most layouts contain a heterogeneous mix of
memory and control circuits. ZIP, 2D-1.Z and BZIP2 take advantage of
repetitions resulting in high compression ratios on memory cells. In con-
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trast, where the layout becomes less regular, the context modeling of JBIG
has an advantage over ZIP, 2D-LZ, and BZIP2.

Table 1.4: Compression ratio of run length, Huffman, LZ77, ZIP, BZIP2, and C4
for 5-bit grey layout image data.

Layer | RLE | Huf | LZ77 | LZ77 | ZIP | BZIP2 | C4
256 1024
M2 1.4 23 | 44 21 25 28 35
M1 1.0 1.7 | 2.9 5.0 7.8 |11 15
Poly | 1.1 1.6 | 3.3 4.6 6.6 | 10 14
Via 5.0 3.7 | 10 12 15 24 32
N 6.7 3.2 |13 28 32 42 52
P 5.7 3.3 | 16 45 52 72 80

Table 1.4 is compression results for more modern layout image data with
65 nm pixels and 5-bit grey layout image data. For each layer, 5 blocks of
1024 x 1024 pixels are sampled from two different layouts, 3 from the first,
and 2 from the second, and the minimum compression ratio achieved for
each algorithm over all 5 samples is reported. The reason for using mini-
mum rather than the average has to do with limited buffering in the actual
hardwarc implementation of maskless lithography writers. Specifically, the
compression ratio must be consistent across all portions of the layout as
much as possible. From left to right, compression ratios are reported in
columns for a simple run-length encoder, Huffman encoder, LZ77 with a
history buffer length of 256, LZ77 with a history buffer length of 1024, ZIP,
BZIP2, and C4. Clearly, C4 still has the highest compression ratio among
all these techniques. Some notable lossless grey-pixel image compression
techniques have been excluded from this table including SPTHT and JPEG-
LS. Our previous experiments in [2] have already shown that they do not
perform well as simple ZIP compression on this class of data.

In Table 1.5, we show results for 10 sample images from the data set used
to obtain Table 1.4, where each row is information on one sample image. In
the first column “Type”, we visually categorize cach sample as repetitive,
non-repetitive, or containing a mix of repetitive and non-repetitive regions.
The second column is the chip layer from which the sample is drawn. The
third column “LP” is the compression ratio achieved by linear prediction
alone, equivalent to C4 compression with copy regions disabled. The fourth
and fifth columns are the compression ratio achicved by ZIP and the full C4
compression respectively. The last column “Copy%” is the percent of the
total sample image area covered by copy regions, when C4 compression is
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Table 1.5: Percent of each image covered by copy regions (Copy%), and its
relation to compression ratios for Linear Prediction (LP), ZIP, and C4 for 5-bit
grey layout image data.

Type Layer | LP | ZIP | C4 | Copy%
Repetitive | M1 33|78 |18 | 94%
Poly | 2.1 66 |18 | 99%
Non-Rep. | M1 14 | 12 16 | 18%
Poly | 73196 | 14 | 2%
Mixed M1 7.5 | 12 15 | 44%
Poly | 41|10 |14 | 62%
M2 15 | 26 35 | 33%
N 18 | 32 52 | 21%
P 29 | 52 80 | 33%
Via 7.1 | 15 32 | 54%

applied. Any pixel of the image not covered by copy regions is, by deflault,
linearly predicted from its neighbors.

Clearly, the Copy% varies dramatically from image to image ranging
from 18% to 99% across the 10 samples, testifying to C4’s ability to adapt
to different types of layouts. In general a high Copy% corresponds to repet-
itive layout, and low Copy% corresponds to non-repetitive layout. Also, the
higher the Copy%, the more favorably 7ZIP compares to I.LP compression.
This agrees with the intuition that LZ-style techniques work well for repet-
itive layout, and prediction techniques work well for non-repetitive layout.
At one extreme, in the non-repetitive-M1 row, where 18% of the image is
copied in C4, LP’s compression ratio exceeds ZIP. At the other extreme, in
the repetitive-Poly row, where 99% of the image is copied, ZIP’s compres-
sion ratio is more than 3 times that of LP. This trend breaks down when
the compression becomes high for both LP and ZIP, e.g. the rows labeled
Mixed-N and Mixed-P. These layouts contain large featureless areas, which
are easily compressible by both copying and prediction. In thesc cases, C4
favors using prediction to avoid the overhead of specifying copy parameters.

1.8 Summary

C4 is a novel compression algorithm, which successfully integrates the ad-
vantages of two very disparate compression techniques: context-based mod-
eling and LZ-style copying. This is particularly important in the context
of layout image data compression which contains a heterogeneous mix of
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data: dense repetitive data better suited to LZ-style coding, and less dense
structured data, better suited to context based encoding. In addition, C4
utilizes a novel binary entropy coding technique called combinatorial cod-
ing which is simultaneously as efficient as arithmetic coding and as fast
as Huffman coding. Compression results show that C4 achicves superior
compression results over JBIG, ZIP, BZIP2 and 2D-LZ for a wide variety
of industry lithography image data.

This research is conducted under the Research Network for Advanced
Lithography, supported jointly by SRC (01-MC-460) and DARPA (MDA972-
01-1-0021).
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