
SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Lossless Compression of VLSI Layout Image Data
Vito Dai, Member, IEEE, and Avideh Zakhor, Fellow, IEEE

Abstract— We present a novel lossless compression algorithm
called Context Copy Combinatorial Code (C4), which integrates
the advantages of two very disparate compression techniques:
context-based modeling and Lempel-Ziv (LZ) style copying.
While the algorithm can be applied to many lossless compression
applications, such as document image compression, our primary
target application has been lossless compression of integrated
circuit layout image data. These images contain a heterogeneous
mix of data: dense repetitive data better suited to LZ-style coding,
and less dense structured data, better suited to context based
encoding. As part of C4, we have developed a novel binary
entropy coding technique called combinatorial coding which is
simultaneously as efficient as arithmetic coding, and as fast
as Huffman coding. Compression results show C4 outperforms
JBIG, ZIP, BZIP2, and 2D-LZ, and achieves lossless compression
ratios greater than 22 for binary layout image data, and greater
than 14 for grey-pixel image data.

Index Terms— compression, lithography, maskless, C4.

I. INTRODUCTION

FOR a next-generation 45-nm lithography system, using 25
nm, 5-bit grey pixels, a typical image of only one layer

of a 2cm× 1cm chip represents 1.6 terabits of data. A direct-
write maskless lithography system with the same specifications
requires data transfer rates of 10 terabits per second in order
to meet the current industry production throughput of one
wafer per layer per minute [3]. These enormous data sizes,
and data transfer rates, motivate the application of lossless
data compression to VLSI layout data.

VLSI designs produced by microchip designers consist of
multiple layers of 2-D polygons stacked vertically, represent-
ing wires, transistors, etc. For pixel-based lithography writers,
each layer is converted to a 2-D image. Pixels may be binary
or grey depending on the design of the writer. A magnified
sample of a binary image is shown in Fig. 1(a) and a grey
image is shown in Fig. 1(b).

These lithography images differ from natural or even docu-
ment images in several important ways. They are synthetically
generated, highly structured, follow a rigid set of design
rules, and contain highly repetitive regions cells of common
structure.

In previous work [3], we have proposed a data-delivery
system design capable of delivering these layout images to
a massively parallel array of pixel-based lithography writers
fabricated on a chip, e.g. an array of micromirrors described in
[4]. This data-delivery system, shown in Figure. 2, meets the
tera-pixel data rates through the use of compression. From top
to bottom, first each layer of a microchip design is converted to
a 2-D image, losslessly compressed by an estimated factor of

Initial submission.
Video and Image Processing Lab, Department of Electrical Engineer-

ing and Computer Science, University of California/Berkeley. (e-mail:
vdai@eecs.berkeley.edu; avz@eecs.berkeley.edu)

(a) (b)
Fig. 1. A sample of layout image data (a) binary and (b) grey.

25, and stored to disk. Before the lithography writing process,
a single compressed layer image is transferred from the disk
to on-board DRAM memory. During the writing process,
compressed data is streamed on-demand from the board to
the chip containing the lithography writers. A parallel array
of decoders, fabricated on the same substrate as the writers,
must then decompress this data on-the-fly, and supply 10 Tb/s
of data to the writers. The merits of this design, and the
larger maskless lithography problem are beyond the scope
of this paper. Here, we focus on the problem of finding a
lossless compression algorithm for VLSI layout image capable
of achieving such high lossless compression ratios. In addition,
for this application, the decoder circuitry must be implemented
in hardware as a parallel array of thousands of decoders,
fabricated on the same integrated-circuit chip with a massively
parallel array of lithography writers. As such, the decoder must
have a very low implementation complexity. In contrast, the
encoding is done off-line, and is under no such complexity
constraint.

Our previous experiments [2], [3] have shown that Lempel-
Ziv (LZ77) style copying [5], used in ZIP, results in high
compression ratios on dense, repetitive circuits, such as arrays
of memory cells. However, where these repetitions do not
exist, such as control logic circuits, LZ-copying does not
perform as well. In contrast, context-based prediction [6], used
in JBIG [7], captures the local structure of lithography data,
resulting in good compression ratios on non-repetitive circuits,
but it fails to take advantage of repetitions, where they exist.

We have combined the advantages of LZ-copying and
JBIG context-modeling into a new lossless image compression
technique called Context Copy Combinatorial Coding (C4). C4
is a single compression technique which performs well for all
types of layout: repetitive, non-repetitive, or a heterogeneous
mix of both. In addition, we have developed hierarchical
combinatorial coding (HCC) as a low-complexity alternative

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 2

Storage Disks
640 GBit

Processor Board
64 GBit DRAM

Real-Time
Decoder

Lithography
Writers

Decoder-Writer
Chip

1.1 Gb/s

400 Gb/s

9.4 Tb/s

25 to 1 all
compressed layers

25 to 1 single
compressed layer

Fig. 2. System architecture of a data-delivery system for maskless lithogra-
phy.

entropy coding technique to arithmetic coding [9] to be used
within C4.

Section II describes the overall structure of C4. Section
III describes the context-based prediction model used in C4.
Section IV describes LZ-copying in two dimensions and how
the C4 encoder segments the image into regions using LZ-
copying and context-based prediction. Section V describes
HCC used to code prediction errors. Section VI describes the
extension of C4 to grey-pixel layout image data. Section VII
includes the compression results of C4 in comparison to other
existing compression techniques for integrated circuit layout
data.

II. OVERVIEW OF C4

The basic concept underlying C4 compression is to inte-
grate the advantages of two disparate compression techniques:
local context-based prediction and LZ-style copying. This is
accomplished by automatic segmentation of the image into
copy regions and prediction regions. Each pixel inside a copy
region is copied from a pixel preceding it in raster-scan order.
Each pixel inside a prediction region, i.e. not contained in
any copy region, is predicted from its local context. However,
neither predicted values nor copied values are 100% correct, so
error bits are used to indicate the position of these prediction
or copy errors. These error bits can be compressed using any
binary entropy coder, but in C4, we apply our own hierarchical
combinatorial coding (HCC) technique as a low-complexity
alternative to arithmetic coding. Only the copy regions and
compressed error bits are transmitted to the decoder.

In addition, as discussed in Section I, for our application to
direct-write maskless lithography, the C4 decoding algorithm
must be implemented in hardware as a parallel array of
thousands of C4 decoders fabricated on the same integrated-
circuit chip as a massively parallel array of writers [3].

Compute
prediction

error image

Find
copy

regions
Layout

error bits

segmentation

error bits

Predict/Copy

Compare XOR

HCC Decoder

Predict/Copy

Layout Correction XOR

HCC Encoder

Decoder

Encoder

segmentation

segmentation

Fig. 3. Block diagram of C4 encoder and decoder for binary images.

As such, the C4 decoder must have a low implementation
complexity. In contrast, the C4 encoder is under no such
complexity constraint. This basic asymmetry in the complexity
requirement between encoding and decoding is central to the
design of the C4 algorithm.

Fig. 3 shows a high-level block diagram of the C4 encoder
and decoder for binary layout images. First, a prediction
error image is generated from the layout, using a simple 3-
pixel context-based prediction model. Next, the resulting error
image is used to determine the segmentation map between
copy regions and the prediction region, i.e. the set of pixels not
contained in any copy region. As specified by the segmentation
map, the Predict/Copy block estimates each pixel value, either
by copying or by prediction. The result is compared to the
actual value in the layout image. Correctly predicted or copied
pixels are indicated with a “0”, and incorrectly predicted or
copied pixels are indicated with a “1”, equivalent to a Boolean
XOR operation. These error bits are compressed without loss
by the HCC encoder, which are transmitted to the decoder,
along with the segmentation map.

The decoder mirrors the encoder, but skips the complex
steps necessary to find the segmentation map, which are
received from the encoder. Again as specified by the segmenta-
tion, the Predict/Copy block estimates each pixel value, either
by copying or by prediction. The HCC decoder decompresses
the error bits from the encoder. If the error bit is “0” the
prediction or copy is correct, and if the error bit is “1” the
prediction or copy is incorrect and must be inverted, equivalent
to a Boolean XOR operation. Since there is no data modeling
performed in the C4 decoder, it is considerably simpler to
implement than the encoder, satisfying one of the requirements
of our application domain.

III. CONTEXT-BASED PREDICTION MODEL

For our application domain, i.e. integrated-circuit layout
compression, we use a simple 3-pixel binary context-based
prediction model to use in C4, much simpler that the 10-pixel
model used in JBIG [7]. Since the number of contexts scales
exponentially with the number pixels used for prediction,
this represents a significant complexity reduction of the C4
prediction mechanism at the decoder, as compared to JBIG.
Nonetheless, this simple 3-pixel context captures the essential

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 3

TABLE I
THE 3-PIXEL CONTEXTS, PREDICTION, AND THE EMPIRICAL PREDICTION

ERROR PROBABILITY FOR A SAMPLE LAYOUT

Context Prediction Error Error probability

0.0055

0.071

0.039

0

0

0.022

0.037

0.0031

(a) (b)
Fig. 4. Non-repetitive layout image data and its resulting prediction error
image.

“Manhattan” structure of layout data, as well as some design
rules, as seen in Table I.

The pixels used to predict the current coded pixel are the
ones above, left, and above-left of the current pixel. The first
column shows the 8 possible 3-pixel contexts, the second
column shows the prediction, the third column shows what
a prediction error represents, and the fourth column shows the
empirical prediction error probability for an example layout.
From these results, it is clear that the prediction mechanism
works extremely well. Layout data is dominated by vertical
edges, horizontal edges, and regions of constant intensity.
The simple 3-pixel context predicts all these cases perfectly.
Consequently, we do not expect much benefit to increasing
the number of context pixels to 4 or higher, and in fact, this
intuition matches our empirical observations. Visual inspection
of the prediction error reveals that prediction errors primarily
occur at the corners in the layout. The two exceptional 0%
error cases in rows 5 and 6 represent design rule violations.

To generate the prediction error image, each correctly
predicted pixel is marked with a “0”, and each incorrectly
predicted pixel is marked with a “1”, creating a binary image
which can be compressed with a standard binary entropy coder.
The fewer the number of incorrect predictions, the higher
the compression ratio achieved. Alternatively, we can group

(a) (b)
Fig. 5. Dense repetitive layout image data and its resulting prediction error
image.

w

h

dx (x,y)

Fig. 6. Illustration of a copy left region.

pixels by their context, forming 8 separate binary streams,
each to be compressed separately by its own entropy coder.
Empirically, for layout images, we have found that operating
on the prediction error image is as efficient as grouping pixels
by context.

An example of non-repetitive layout for which prediction
works well is shown in Fig. 4(a), and its corresponding
prediction error image is shown in Fig. 4(b).

In contrast to the non-repetitive layout shown in Fig. 4(a),
some layout image data contains regions that are visually
“dense” and repetitive. An example of such a region is shown
in Fig. 5(a). This visual “denseness” results in a dense, large
number of prediction errors as seen clearly in the prediction
error image in Fig. 5(b).

The high density of prediction errors translates into low
compression ratios using prediction alone. In C4, areas of
dense repetitive layout are covered by copy regions to reduce
the number of errors, as described in Section IV.

IV. COPY REGIONS AND SEGMENTATION

As seen in Fig. 5(a) of the previous section, some layout
images are highly repetitive. We can take advantage of this
repetitiveness to achieve compression by specifying copy
regions, i.e. a rectangular region that is copied from another
rectangular region preceding it in raster-scan order.

An example of a copy region is shown in the dashed
rectangle in Fig. 6. As seen, a copy region is specified with six

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 4

copy parameters: position of the upper left corner x,y, width
w, height h, distance to the left to copy from dx, and distance
above to copy from dy. For the copy region in Fig. 6, every
pixel inside the region is copied from dx pixels to its left,
and dy = 0. Although the entire region is copied, the copy
itself need not be 100% correct. Similar to the prediction error
map, there is a corresponding copy error map within the copy
region. Each correctly copied pixel is indicated with a “0”, and
each incorrectly copied pixel each incorrectly predicted pixel
is marked with a “1”, creating a binary sub-image which can
be compressed with a standard binary entropy coder.

This method of copying is related to LZ77 [5] copying,
but extended to 2-D. Conceptually, this allows us to capture
the 2D-repetitions found in layout. In addition, note that in
Fig. 6 the single copy region spans three horizontal periodic
repetitions, with period dx. In C4, an entire periodic array
can be described with a single copy region. This simple
feature is extremely important for extracting compression
efficiency from layout data, which can contain large periodic
2D-arrays. This contrasts sharply with the method of copying
used in JBIG2 [8] called “soft-pattern matching” [16], which
constructs an explicit dictionary of pixel blocks that can be
throughout the image. In JBIG2, each individual copy in a 2D
periodic array must be separately referenced [8], leading to
a lower compression efficiency in comparison to C4 for this
type of data.

As described in Section II, the C4 encoder automatically
segments the image into copy regions and the prediction
region, i.e. all pixels not contained in any copy region. Each
copy region has its own copy parameters and corresponding
copy error map, and the background prediction region has a
corresponding prediction error map. Together, the error maps
merge to form a combined binary prediction/copy error map
of the entire image, which is compressed using hierarchical
combinatorial coding (HCC) as a binary entropy coder. The
lower the number of the total sum of prediction and copy
errors, the higher the compression ratio achieved. However,
this improvement in compression by the introduction of copy
regions, is offset by the cost in bits to specify the copy
parameters (x, y, w, h, dx, dy) of each copy region. Moreover,
copy regions that overlap with each other are undesirable: each
pixel should only be coded once, to save as many bits as
possible.

Ideally, we would like the C4 encoder to find the set of
non-overlapping copy regions, which minimizes the sum of
number of compressed prediction/copy error bits, plus the
number of bits necessary to specify the parameters of each
copy region. An exhaustive search over this space would
involve going over all possible non-overlapping copy region
sets, a combinatorial problem, generating the error bits for
each set, and performing HCC compression on the error bits.
This is clearly infeasible. To make the problem tractable, a
number of simplifying assumptions and approximate metrics
are adopted.

First we use entropy as a heuristic to estimate the number of
bits generated by the HCC encoder to represent error pixels. If
p denotes the percentage of prediction/copy error pixels over
the entire image, then error pixels are assigned a per-pixel

cost of C = −log2(p) bits, and correctly predicted or copied
pixels are assigned a per-pixel cost of −log2(1 − p) ≈ 0. Of
course, given a segmentation map, p can be easily calculated
by counting the number of prediction/copy error bits; at the
same time, p affects how copy regions are generated in the
first place, as discussed shortly. In C4, we solve this chicken
and egg problem by first guessing a value of p, finding a
segmentation map using this value, counting the percentage
of prediction/copy error pixels, and using this percentage as a
new value for p as input to the segmentation algorithm. This
process can be iterated until the guess p matches the percent-
age of error pixels, but in practice we find that one iteration is
sufficient if the starting guess is reasonable. Empirically, we
have found a good starting guess to be the percentage of error
pixels when no copy regions are used, then discounted by a
constant factor of 4.

Next, for any given copy region, we compare the cost, in
bits, of coding that region using copy, versus the cost of coding
the region using prediction. If the cost of copying is lower,
then the amount by which it is lower is the benefit of using
this region. The cost of copying is defined as the sum of the
cost of describing the copy parameters, plus the cost of coding
the copy error map. For our particular application domain, the
description cost is 51 bits. Here we have restricted x, y, w,
h to 10-bits each which is reasonable for our 1024 × 1024
test images. In addition, we assume that copies are either from
above, or to the left, so (dx, dy) is replaced by (left/above, d)
and represented with 11 bits, where d, represented by 10
bits, denotes the distance left or above to copy from, and
left/above, represented by 1 bit, denotes the direction left
or above to copy from. This assumption is in line with the
Manhattan structure of layout data. The cost of coding the
copy error map is estimated as C × Ecopy , where C denotes
the estimated per-pixel cost of an error pixel, as discussed
previously, and Ecopy denotes the number of copy error pixels
in the region. Correctly copied pixels are assumed to have 0
cost, as discussed previously. So the total cost of copying is
51 + C × Ecopy .

The cost of coding the region using prediction is the
cost of coding the prediction error map of that region. It
is estimated as C × Econtext , where Econtext denotes the
number of prediction error pixels in the region. Finally, the
benefit of a region is the difference between these two costs,
C×(Econtext−Ecopy)−51 . Note that it is possible for a region
to have negative benefit if Econtext − Ecopy ≤ (51/C). The
threshold T = (51/C) is used to quickly disqualify potential
copy regions in the search algorithm presented below.

Using benefit as a metric, the optimization goal is to
find the set non-overlapping copy regions, which maximizes
the sum of benefit over all regions. This search space is
combinatorial in size, so exhaustive search is prohibitively
complex. Instead we adopt a greedy approach, similar to that
used in the 2D-LZ algorithm described in [3]. The basic
strategy used by the find copy regions algorithm in Fig. 3
is as follows: start with an empty list of copy regions; and
in raster-scan order, add copy regions of maximum benefit,
that do not overlap with regions previously added to the list.
The completed list of copy regions is the segmentation of

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 5

Begin find copy regions

Generate next (x,y) in raster order

Is (x,y) inside

segmentation region?

Generate next (left/above, d)j

Find maximum size copy regions

{(w1,h1), (w2,h2),…,(wi,hi),…}

Initialize segmentation to empty list

Evaluate benefiti for each (wi,hi)

Find region of highest benefit over all i

(x,y,(left/above,d,(w,h,benefit)maxi)j)

Is last (left/above,d)j?

Find region of highest benefit over all j

(x,y,(left/above,d,(w,h,benefit)maxi)maxj)

If benefitmaxi,maxj > 0

add region to the segmentation list

Is last (x,y)?

Output segmentation list

End find copy regions

yes

no

yes

yes

no

no

Fig. 7. Flow diagram of the find copy regions algorithm.

the layout. A detailed flow diagram of the find copy regions
algorithm is shown in Fig. 7, and described in the remainder
of this section.

In raster-scan order, we iterate through all possible (x, y). If
(x, y) is inside any region in the segmentation list, we move on
to the next (x, y); otherwise, we iterate through all possible
(left/above, d). Next for a given (x, y, left/above, d), we
maximize the size of the copy region (w, h) with the constraint
that a stop pixel is not encountered; we define a stop pixel
to be any pixel inside a region in the segmentation list,
or any pixel with a copy error. These conditions prevent
overlap of copy regions, and prevent the occurrence of copy
errors, respectively. Later, we describe how to relax this latter
condition to allow for copy errors. The process of finding
maximum size copy regions (w, h), is discussed in the next
paragraph. Finally, we compute the benefit of all the maximum
sized copy regions, and, if any region with positive benefit
exists, we add the one with the highest positive benefit to the
segmentation list.

We now describe the process of finding the maximum size

(x,y)

(w1,h1)
(w2,h2)

(w3,h3)

w1

h1

Fig. 8. Illustration of three maximum copy regions bordered by four stop
pixels.

copy region (w, h). For any given (x, y, left/above, d) there
is actually a set of maximum size copy regions, bordered by
stop pixels, because (w, h) is a two-dimensional quantity. This
is illustrated in the example in Fig. 8. In the figure, the position
of the stop pixels are marked with ⊗ and three overlapping
maximum copy regions are shown (x, y, w1, h1) (x, y, w2, h2)
and (x, y, w3, h3). The values w1, h1, w2, h2, w3, and h3 are
found using the following procedure: initialize w = 1, h = 1.
Increment w until a stop pixel is encountered; at this point
w = w1. Next increment h, and for each h increment w from
1 to w1, until a stop pixel is encountered; at this point h = h1,
and w = w2. Again increment h, and for each h increment w
from 1 to w2, until a stop pixel is encountered; at this point
h = h2, and w = w3. Finally, increment h, and for each h
increment w from 1 to w3, until a stop pixel is encountered; at
this point h = h3, and w = 1. The maximum size algorithm
is terminated when a stop pixel is encountered at w = 1.

As stated previously, any pixel inside a region in the
segmentation list, and any pixel with a copy error, is a stop
pixel. The latter condition prevents any copy errors inside
a copy region. We relax this condition to merge smaller,
error free, copy regions, into larger copy regions with a few
number of copy errors. The basic premise is to tradeoff the
51-bits necessary to describe a new copy region against the
introduction of bits needed to code copy errors, by excluding
some copy error pixels from being stop pixels. For each copy
error pixel, we look at a window of W pixels in a row, where
the left most pixel is the copy error. If, in that window, the
number of copy errors is less than the average number of
errors expected, Ecopy < Wp, and the number of copy errors
is less than the number of prediction errors, Ecopy < Epredict,
then pixel with the copy error no longer considered to be a
stop pixel. The size of the look-ahead window W is a user-
defined input parameter to the C4 algorithm. Larger values of
W correspond to fewer, larger copy regions, at the expense of
increasing the number of copy errors.

V. HIERARCHICAL COMBINATORIAL CODING

We have proposed and developed combinatorial coding
(CC) [9] as an alternative to arithmetic coding to encode the
error bits in Fig. 3. The basis for CC is universal enumerative
coding [10] which works as follows. For any binary sequence
of known length N , let k denote the number of ones in that
sequence. k ranges from 0 to N , and can be encoded using
a minimal binary code [13], i.e. a simple Huffman code for
uniform distributions, using dlog2(N + 1)e bits. There are

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 6

exactly C(N, k) = N !/(N−k)!k! sequences of length N with
k ones, which can be hypothetically listed. The index of our
sequence in this list, known as the ordinal or rank, is an integer
ranging from 1 to C(N, k), which can again be encoded using
a minimal binary code, using dlog2C(N, k)ebits. Enumerative
coding is theoretically shown to be optimal [10] if the bits to
be compressed are independently and identically distributed
(i.i.d.) as Bernoulli(θ) where θ denotes the unknown prob-
ability that “1” occurs, which in C4, corresponds to the
percentage of error pixels in the prediction/copy error map.
The drawback of computing an enumerative code directly is
its complexity: the algorithm to find the rank corresponding
to a particular binary sequence of length N , called ranking
in the literature, is in time, is O(N) in memory, and requires
O(N) bit precision arithmetic [10].

In CC, this problem is addressed by first dividing the bit
sequence into blocks of fixed size M . For today’s 32-bit
architecture computers, M = 32 is a convenient and efficient
choice. Enumerative coding is then applied separately to each
block, generating a (k, rank) pair for each block. Again, using
the same assumption that input bits are i.i.d. as Bernoulli(θ),
the number of ones k in a block of M bits are i.i.d. as
Binomial(M, θ). Even though the parameter θ is unknown,
as long as the Binomial distribution is not too skewed, e.g.
0.01 < θ < 0.99, a dynamic Huffman code efficiently
compresses the k-values with little overhead, because the range
of k is small. Given there are k ones in a block of M bits, the
rank remains uniformly distributed, as in enumerative coding.
Therefore, rank-values are efficiently coded using a minimum
binary code.

The efficiency of CC, as described, is on par with arithmetic
coding, except in cases of extremely skewed distributions, e.g.
θ < 0.01. In these cases, the probability that k = 0 approaches
1 for each block, causing the Huffman code to be inefficient.
To address this issue, we have developed an extension to CC
called hierarchical combinatorial coding (HCC). It works by
binarizing sequence of k-values such that k = 0 is indicated
with a “0” and k = 1 to 32 is indicated with a “1”. CC is
then applied to the binarized sequence of “0” and “1”, and the
value of k, ranging from 1 to 32 in the “1” case, is Huffman
coded. Clearly, this procedure of CC encoding, binarizing the
k-values, then CC encoding again can be recursively applied
in a hierarchical fashion, to take care of any inefficiencies in
the Huffman code for k-values, as θ approaches 0.

Fig. 9 is an example of HCC in action with 2-levels of
hierarchy and block size M = 4. Only values in bold italics
are coded and transmitted to the decoder. Looking at rows from
bottom to top, the original data is in the lowest row labeled
“bits – level 0”. Applying CC with M = 4, the next two rows
show the rank and k value for each block in level 0. Note
that when k = 0 no rank value is needed as indicated by the
hyphen. The high frequency of 0 in “k – level 0” makes it
inefficient for coding directly using Huffman coding. Instead,
we binarize “k – level 0”, to form “bits – level 1”, using the
binarization procedure described in the previous paragraph.
CC is recursively applied to “bits – level 1”, to compute “rank
– level 1” and “k – level 1”. Finally, to code the data, “k –
level 1” is coded using a Huffman code, “rank – level 1” is

0000 0000 0000 0000 0010 0000 1010 0000

0 0 0 0 1 0 2 0

0000 1010

0 2

bits - level 0

k - level 0

bits - level 1

k - level 1

- 2 rank – level 1

- - - - 3 - 2 - rank – level 0

Fig. 9. 2-level HCC with a block size M = 4 for each level.

coded using a minimal binary code, non-zero values of “k –
level 0” are coded using a Huffman code, and “rank – level
0” is coded using a minimal binary code.

The rationale for choosing Huffman coding and minimal
binary coding is the same as CC. If the input is assumed
to be i.i.d. as Bernoulli(θ), all level rank-values are uni-
formly distributed, given the corresponding k-values in the
same level. Furthermore, although the exact distribution of k-
values is unknown, a dynamic Huffman code can adapt to the
distribution with little overhead, because the dynamic range
of k is small. Finally, for highly skewed distributions of k,
which hurts the compression efficiency of Huffman coding,
the binarization process reduces the skew by removing the
most probable symbol k = 0.

Studying the example in Fig. 9, we can intuitively under-
stand the efficiency of HCC: the single Huffman coded 0 in
“k – level 1” decodes to M2 zeroes in “bits – level 0”. In
general, for L-level HCC, a single Huffman coded 0 in level
L − 1 corresponds to ML zeroes in “bits - level 0”. HCC’s
ability to effectively compress blocks of zeroes is critical to
achieving high compression ratios, when the percentage of the
error pixels is low.

In addition to achieving efficient compression, HCC also
has several properties favorable to our application domain.
First, the decoder is extremely simple to implement: the
Huffman code tables are small because the range of k-
values is small, unranking is accomplished with a simple table
lookup, comparator, and adder, and minimal binary decoding
is also accomplished by a simple table lookup and an adder.
Second, the decoder is fast: blocks of M (L+1) zeroes can be
decoded instantly when a zero is encountered at level L. Third,
HCC is easily parallelizable: block sizes are fixed and block
boundaries are independent of the data, so the compressed
bitstream can be easily partitioned and distributed to multiple
parallel HCC decoders. This is in contrast to run-length coding
schemes such as Golomb codes [11], which also code for runs
of zeroes, but have data-dependent block boundaries.

Independent of our development of HCC, a similar tech-
nique called Hierarchical Enumerative Coding (HEC) has
been developed in [12]. The main difference between HEC
and HCC is the method of coding k values at each level.
HCC uses binarization and simple Huffman coding, whereas
HEC uses hierarchical integer enumerative coding, which is
more complex [12]. In addition, HEC requires more levels of
hierarchy to achieve the same level of compression efficiency
as HCC. Consequently, HCC is significantly less complex to

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 7

TABLE II
RESULT OF 3-PIXEL CONTEXT BASED BINARY IMAGE COMPRESSION ON A

242 KB LAYOUT IMAGE FOR A P3 800 MHZ PROCESSOR

Metric Huf8 Arith. Golomb HEC HCC
Comp. ratio 7.1 47 49 48 49
Enc. time(s) 0.99 7.46 0.52 2.43 0.54
Dec. time(s) 0.75 10.19 0.60 2.11 0.56

error value

error bits

error value

Compute

prediction

error image

Find

copy

regions
Layout

error bits

copy regions

Predict/Copy

Compare

HCC Decoder

Predict/Copy

Layout Correction XOR

HCC Encoder

Decoder

Encoder

Huffman Encoder

Huffman Decoder

Fig. 10. Block diagram of C4 encoder and decoder for grey-pixel images.

compute than HEC.
To compare HCC with existing entropy coding techniques,

we apply 3-pixel context based modeling as described in III
to a 242 kb layout image and group pixels by context into
8 binary streams. We then apply Huffman coding to blocks
of 8-bits, arithmetic coding, Golomb run-length coding, HEC,
and HCC to each binary stream, and report the compression
ratio obtained by each algorithm. In addition, we report the
encoding and decoding times as a measure for complexity of
these algorithms. The results are shown in Table II.

Among these techniques, HCC is one of the most efficient in
terms of compression, and one of the fastest to encode and de-
code, justifying its use in C4. The only algorithm comparable
in both efficiency and speed, among those tested, is Golomb
run-length coding. However, as previously mentioned, HCC
has fixed, data-independent block boundaries, which are ad-
vantageous for parallel hardware implementations; run-length
coding does not. Run-times are reported for 100 iterations
on an 800 MHz Pentium III workstation. All algorithms are
written in C# and optimized with the assistance of VTune
to eliminate bottlenecks. The arithmetic coding algorithm is
based on that described in [13].

VI. EXTENSION TO GREY PIXELS

So far, C4 as described is a binary image compression
technique. To extend C4 to encode 5-bit grey-pixel layout
image, slight modifications need to be made to the prediction
mechanism, and the representation of the error. Specifically,
the local 3-pixel context based prediction described in Section
3, is replaced by 3-pixel linear prediction with saturation, to
be described later; furthermore, in places of prediction or copy
error, where the error bit is ”1”, an error value indicates the

a b

c ?

x = b – a + c
if (x < 0) then ? = 0

if (x > max) then ? = max

otherwise ? = x

Fig. 11. 3-pixel linear prediction with saturation used in grey-pixel C4.

TABLE III
COMPRESSION RATIOS OF JBIG, JBIG2, ZIP, 2D-LZ, BZIP2 AND C4

FOR 2048× 2048 BINARY LAYOUT IMAGE DATA.

Type Layer JBIG JBIG2 ZIP 2D-LZ BZIP2 C4
Mem. M2 59 68 88 233 260 332
Cells M1 10 12 48 79 56 90

Poly 12 14 51 120 83 141
Ctrl. M2 47 52 22 26 32 50
Logic M1 20 23 11 11 11 22

Poly 42 43 19 20 23 45
Encode Time (s) 6 11 2 640 4 720
Decode Time (s) 6 7 1 2 4 2

correct value of that pixel. A block diagram of the C4 encoder
and decoder for grey-pixel images is shown in Fig. 10.

First, a prediction error image is generated from the layout,
using a simple 3-pixel linear prediction model. The error image
is a binary image, where “0” denotes a correctly predicted
grey-pixel value and “1” denotes a prediction error. The copy
regions are found as before in binary C4, with no change in the
algorithm. As specified by the copy regions, the Predict/Copy
generates pixel values either using copying or linear predic-
tion. The result is compared to the actual value in the layout
image. Correctly predicted or copied pixels are indicated with
a “0”, and incorrectly predicted or copied pixels are indicated
with a “1” with an error value generated indicating the true
value of the pixel. The error bits are compressed with a HCC
encoder, and the actual error values are compressed with a
Huffman encoder.

As in binary C4, the grey-pixel C4 decoder mirrors the
encoder, but skips the complex steps necessary to find the
copy regions. The Predict/Copy block generates pixel values
either using copying or linear prediction according to the copy
regions. The HCC decoder decodes the error bits, and the
Huffman decoder decodes the error values. If the error bit is
“0” the prediction or copy is correct, and if the error bit is “1”
the prediction or copy is incorrect and the actual pixel value
is the error value.

The linear prediction mechanism used in grey-pixel C4 is
analogous to the context-based prediction used in binary C4.
Each pixel is predicted from its 3-pixel neighborhood as shown
in Fig. 11. “?” is predicted as a linear combination of its local
3-pixel neighborhood “a”, “b”, and “c”. If the prediction value
is negative or exceeds the maximum allowed pixel value max,
the result is clipped to 0 or max respectively. Interestingly,
this linear predictor can also be applied to a binary image by
setting max = 1, resulting in the same predicted values as
binary context-based prediction described in Section 3. It is
also similar to the median predictor used in JPEG-LS [15].

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 8

VII. COMPRESSION RESULTS

We apply a suite of existing and general lossless compres-
sion techniques as well as C4 to binary layout image data.
Compression results are listed in Table III. The original data
are 2048 × 2048 binary images with 300 nm pixels sampled
from an industry microprocessor layout, which corresponds
to a 0.61 mm by 0.61 mm section, covering about 0.1%
of the chip area. Each entry in the table corresponds to the
compression ratio for one such image.

The first column “Type” indicates where the sample comes
from, memory, control, or a mixture of the two. Memory
circuits are typically extremely dense but highly repetitive.
In contrast, control circuits are highly irregular, but typically
much less dense. The second column “Layer” indicates which
layer of the chip the image comes from. Poly and Metal1
layers are typically the densest, and mostly correspond to wire
routing and formation of transistors. The remaining columns
from left to right are compression ratios achieved by: JBIG,
JBIG2, ZIP, 2D-LZ our 2D extension to the LZ77 copying [3],
BZIP2 based on the Burrows-Wheeler Transform [14], and C4.
The bold numbers indicate the highest compression for each
row.

As seen, C4 outperforms all these algorithms for repetitive
layouts, and is tied for first with JBIG2 for non-repetitive
layouts. This is significant, because most layouts contain a
heterogeneous mix of memory and control circuits. ZIP, 2D-
LZ and BZIP2 take advantage of repetitions resulting in high
compression ratios on memory cells. In contrast, where the
layout becomes less regular, the context modeling of JBIG
and JBIG2 has an advantage over ZIP, 2D-LZ, and BZIP2. It
is worth noting that the compression efficiency of JBIG2 varies
with the encoder implementation, and our tests are based on
the JBIG2 encoder implementation used within Adobe Acrobat
6.0.

The last two rows report the encoder and decoder runtime
of the various algorithms on a 1.8GHz Mobile Pentium 4
with 512MB of RAM running Windows XP. Each algorithm
is asked to compress and decompress a suite of 10 binary
layout files, and runtimes are measured to the nearest second
by hand. Unfortunately, a more precise measurement has not
been possible due to the varying input/output formats of the
different software. The most striking result is the slow speed
of the C4 encoder, in contrast to the fast performance of the
C4 decoder. This is a direct consequence of the segmentation
algorithm at the encoder, that is absent from the decoder imple-
mentation. Although it can be argued that encoder complexity
is not a concern in our application domain, nonetheless, some
algorithmic improvements and optimizations to improve the
speed of the segmentation are needed.

Table IV is compression results for more modern layout
image data with 65 nm pixels and 5-bit grey layout image data.
For each layer, 5 blocks of 1024 × 1024 pixels are sampled
from two different layouts, 3 from the first, and 2 from the
second, and the minimum compression ratio achieved for each
algorithm over all 5 samples is reported. The reason for using
minimum rather than the average has to do with limited
buffering in the actual hardware implementation of maskless

TABLE IV
COMPRESSION RATIO OF RUN LENGTH, HUFFMAN, LZ77, ZIP, BZIP2,

AND C4 FOR 5-BIT GREY LAYOUT IMAGE DATA.

Layer RLE Huf LZ77 LZ77 ZIP BZIP2 C4
256 1024

M2 1.4 2.3 4.4 21 25 28 35
M1 1.0 1.7 2.9 5.0 7.8 11 15
Poly 1.1 1.6 3.3 4.6 6.6 10 14
Via 5.0 3.7 10 12 15 24 32
N 6.7 3.2 13 28 32 42 52
P 5.7 3.3 16 45 52 72 80
Enc (s) 1 1 6 10 4 8 1680
Dec (s) 1 1 2 2 2 8 3

TABLE V
PERCENT OF EACH IMAGE COVERED BY COPY REGIONS (COPY%), AND

ITS RELATION TO COMPRESSION RATIOS FOR LINEAR PREDICTION (LP),
ZIP, AND C4 FOR 5-BIT GREY LAYOUT IMAGE DATA.

Type Layer LP ZIP C4 Copy%
Repetitive M1 3.3 7.8 18 94%

Poly 2.1 6.6 18 99%
Non-Rep. M1 14 12 16 18%

Poly 7.3 9.6 14 42%
Mixed M1 7.5 12 15 44%

Poly 4.1 10 14 62%
M2 15 26 35 33%
N 18 32 52 21%
P 29 52 80 33%
Via 7.1 15 32 54%

lithography writers. Specifically, the compression ratio must be
consistent across all portions of the layout as much as possible.
From left to right, compression ratios are reported in columns
for a simple run-length encoder, Huffman encoder, LZ77 with
a history buffer length of 256, LZ77 with a history buffer
length of 1024, ZIP, BZIP2, and C4. Clearly, C4 still has the
highest compression ratio among all these techniques. Some
notable lossless grey-pixel image compression techniques have
been excluded from this table including SPIHT and JPEG-LS.
Our previous experiments in [2] have already shown that they
do not perform well as simple ZIP compression on this class
of data.

Again, the last two rows report the encoder and decoder run-
time of the various algorithms on a 1.8GHz Mobile Pentium
4 with 512MB of RAM running Windows XP. Each algorithm
is asked to compress and decompress a suite of 10 grey layout
files, and runtimes are measured to the nearest second by hand.
Again, the slow speed of the C4 encoder contrasts the fast
performance of the C4 decoder.

In Table V, we show results for 10 sample images from the
data set used to obtain Table IV, where each row is information
on one sample image. In the first column “Type”, we visually
categorize each sample as repetitive, non-repetitive, or contain-
ing a mix of repetitive and non-repetitive regions. The second
column is the chip layer from which the sample is drawn.
The third column “LP” is the compression ratio achieved by
linear prediction alone, equivalent to C4 compression with
copy regions disabled. The fourth and fifth columns are the
compression ratio achieved by ZIP and the full C4 compres-
sion respectively. The last column “Copy%” is the percent of

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 9

the total sample image area covered by copy regions, when C4
compression is applied. Any pixel of the image not covered
by copy regions is, by default, linearly predicted from its
neighbors.

Clearly, the Copy% varies dramatically from image to image
ranging from 18% to 99% across the 10 samples, testifying to
C4’s ability to adapt to different types of layouts. In general a
high Copy% corresponds to repetitive layout, and low Copy%
corresponds to non-repetitive layout. Also, the higher the
Copy%, the more favorably ZIP compares to LP compression.
This agrees with the intuition that LZ-style techniques work
well for repetitive layout, and prediction techniques work well
for non-repetitive layout. At one extreme, in the non-repetitive-
M1 row, where 18% of the image is copied in C4, LP’s
compression ratio exceeds ZIP. At the other extreme, in the
repetitive-Poly row, where 99% of the image is copied, ZIP’s
compression ratio is more than 3 times that of LP. This trend
breaks down when the compression ratio becomes high for
both LP and ZIP, e.g. the rows labeled Mixed-N and Mixed-P.
These layouts contain large featureless areas, which are easily
compressible by both copying and prediction. In these cases,
C4 favors using prediction to avoid the overhead of specifying
copy parameters.

VIII. CONCLUSION

A novel compression algorithm called C4 is presented,
which successfully integrates the advantages of two very
disparate compression techniques: context-based modeling and
LZ-style copying. This is particularly important in the context
of layout image data compression which contains a hetero-
geneous mix of data: dense repetitive data better suited to
LZ-style coding, and less dense structured data, better suited
to context based encoding. In addition, C4 utilizes a novel
binary entropy coding technique called combinatorial coding
which is simultaneously as efficient as arithmetic coding and
as fast as Huffman coding. Compression results show that C4
achieves superior compression results over JBIG, ZIP, BZIP2
and 2D-LZ for a wide variety of industry lithography image
data.

ACKNOWLEDGMENT

This research is conducted under the Research Network for
Advanced Lithography, supported jointly by SRC (01-MC-
460) and DARPA (MDA972-01-1-0021).

REFERENCES

[1] V. Dai and A. Zakhor, “Advanced Low-complexity Compression for
Maskless Lithography Data”, Emerging Lithographic Technologies VIII,
Proc. of the SPIE Vol. 5374, pp. 610–618, 2004.

[2] V. Dai and A. Zakhor, “Lossless Compression Techniques for Maskless
Lithography Data”, Emerging Lithographic Technologies VI, Proc. of
the SPIE Vol. 4688, pp. 583–594, 2002.

[3] V. Dai and A. Zakhor, “Lossless Layout Compression for Maskless
Lithography Systems”, Emerging Lithographic Technologies IV, Proc.
of the SPIE Vol. 3997, pp. 467–477, 2000.

[4] N. Chokshi, Y. Shroff, W. G. Oldham, et al., “Maskless EUV Lithog-
raphy”, Int. Conf. Electron, Ion, and Photon Beam Technology and
Nanofabrication, Macro Island, FL, June 1999.

[5] J. Ziv, and A. Lempel, “A universal algorithm for sequential data
compression”, IEEE Trans. on Information Theory, IT-23 (3), pp. 337–
43, 1977.

[6] J. Rissanen and G. G. Langdon, “Universal Modeling and Coding”, IEEE
Trans. on Information Theory, IT-27 (1), pp. 12–23, 1981.

[7] CCITT, ITU-T Rec. T.82 & ISO/IEC 11544:1993, Information Tech-
nology – Coded Representation of Picture and Audio Information –
Progressive Bi-Level Image Comp., 1993.

[8] P. G. Howard, F. Kossentini, B. Martins, S. Forchammer, W. J. Ruck-
lidge, “The Emerging JBIG2 Standard”, IEEE Trans. Circuits and
Systems for Video Technology, Vol. 8, No. 7, pp. 838-848, November
1998.

[9] V. Dai and A. Zakhor, “Binary Combinatorial Coding”, Proc. of the
Data Compression Conference 2003, p. 420, 2003.

[10] T. M. Cover, “Enumerative Source Coding”, IEEE Trans. on Information
Theory, IT-19 (1), pp. 73–77, 1973.

[11] S. W. Golomb, “Run-length Encodings”, IEEE Transactions on Infor-
mation Theory, IT-12 (3), pp. 399–401, 1966.

[12] L. Oktem and J. Astola, “Hierarchical enumerative coding of locally
stationary binary data”, Electronics Letters, 35 (17), pp. 1428–1429,
1999.

[13] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes, Second
Edition, Academic Press, 1999.

[14] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compres-
sion algorithm”, Technical report 124, Digital Equipment Corporation,
Palo Alto CA, 1994.

[15] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless
image compression algorithm: principles and standardization into JPEG-
LS”, IEEE Transactions on Image Processing, 9 (8), pp. 1309–1324,
2000.

[16] P. G. Howard, “Text image compression using soft pattern matching”,
Computer Journal, vol.40, no.2-3, Oxford University Press for British
Comput. Soc, UK, 1997, pp.146-56.

[17] P. Frnti and O. Nevalainen, “Compression of binary images by composite
methods based on the block coding”, Journal of Visual Communication
and Image Representation, 6 (4), 366-377, December 1995.

[18] G. G. Langdon, Jr., J. Rissanen, “Compression of black-white im-
ages with arithmetic coding”, IEEE Transactions on Communications,
vol.COM-29, no.6, June 1981, pp.858-67. USA.

SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 10

PLACE
PHOTO
HERE

Vito Dai (M’00) received the B.S. degree in elec-
trical engineering at California Institute of Tech-
nology in 1998, and the M.S. degree in electrical
engineering at University of California at Berkeley
in 2000. He will complete his Ph.D. degree at U.C.
Berkeley in Electrical Engineering in June 2006. He
is currently a Sr. Engineer in the OPC group at
Advanced Micro Devices.

PLACE
PHOTO
HERE

Avideh Zakhor received the B. S. degree from
California Institute of Technology, Pasadena, and
the S. M. and Ph. D. degrees from Massachusetts
Institute of Technology, Cambridge, all in electrical
engineering, in 1983, 1985, and 1987 respectively. In
1988, she joined the Faculty at U. C. Berkeley where
she is currently Professor in the Department of
Electrical Engineering and Computer Sciences. Her
research interests are in the general area of image
and video processing, multimedia communication,
and 3D modeling. Together with her students, She

has won a number of best paper awards, including the IEEE Signal Processing
Society in 1997, IEEE Circuits and Systems Society in 1997 and 1999,
international conference on image processing in 1999, and Packet Video
Workshop in 2002. She holds 5 U.S. patents, and is the co-author of the
book, “Oversampled A/D Converters” with Soren Hein.

Prof. Zakhor was a General Motors scholar from 1982 to 1983, was a Hertz
fellow from 1984 to 1988, received the Presidential Young Investigators (PYI)
award, and Office of Naval Research (ONR) young investigator award in 1992.
From 1998 to 2001, she was an elected member of IEEE Signal Processing
Borad of Governers. In 2001, she was elected as IEEE fellow. She received
the Okawa Prize in 2004.

She co-founded OPC technology in 1996, which was later acquired by
Mentor Graphics (Nasdaq: MENT) in 1998, Truvideo in 2000, and Urban
Scan in 2005.

