
Full Chip Characterization of Compression
Algorithms for Direct Write Maskless

Lithography Systems
Vito Dai, Avideh Zakhor, and George Cramer

University of California, Berkeley

Abstract

Future lithography systems must produce more dense microchips with smaller feature sizes, while main-
taining throughput comparable to today’s optical lithography systems. This places stringent data-handling
requirements of up to 12 Tb/sec on the design of any maskless lithography system. In our past work, we
have developed data-path architectures for such throughput, and shown that lossless compression algorithms
play a key role in such systems. In this paper, we investigate the effectiveness of the Block C4 lossless
layout compression algorithm in increasing throughput of direct write mask-less lithography systems. In
particular, we characterize the compression efficiency of Block C4 on 1024 x 1024 blocks of select layers
of two 65 nm chips: a state of the art microprocessor chip, and a low density parity code (LDPC) chip
used commonly in wireless communication applications. Overall, we have found that compression efficiency
varies significantly from design to design, from layer to layer, and even within parts of the same layer. We
propose a number of ways to cope with the variation of compression ratios within a layer, and characterize
the way each method affects the overall wafer layer throughput.

Index Terms

compression, lithography, maskless, direct, datapath, throughput, C4, microprocessor

I. INTRODUCTION

Future lithography systems must produce chips with smaller feature sizes, while maintaining
throughput comparable to today’s optical lithography systems. This places stringent data handling
requirements on the design of any direct-write maskless system. Optical projection systems use a
mask to project the entire chip pattern in one flash. An entire wafer can then be written in a few
hundreds of such flashes. To be competitive with today’s optical lithography systems, direct write
maskless lithography needs to achieve throughput of one wafer layer per minute. In addition, to
achieve the required 1 nm edge placement with 22 nm pixels in 45 nm technology, a 5-bit per pixel
data representation is needed. Combining these together, the data rate requirement for a maskless
lithography system is about 12 Tb/s. To achieve such a data rate, we have recently proposed a data
path architecture shown in Figure 1 [1], [2], [4], [34]. In this architecture, rasterized, flattened layouts
of an integrated circuit (IC) are compressed and stored in a mass storage system. The compressed
layouts are then transferred to the processor board with enough memory to store one layer at a time.
This board will then transfer the compressed layout to the writer chip, composed of a large number
of decoders and actual writing elements. The outputs of the decoders correspond to uncompressed
layout data and are fed into D/A converters driving the writing elements such as a micro-mirror
array or E-beam writers.

Decoder-Writer Chip

Processor Board
64 GBit DRAM

1.2 Tb/s

Decoder

10 to 1 single
compressed layer

Storage Disks
640 GBit

12 Tb/s

10 to 1 all
compressed layers

1.1 Gb/s

Writers

Fig. 1. System architecture of a data-delivery system for maskless lithography using compression to minimize data transfer rates.

In the proposed data-delivery path, compression is needed to minimize the transfer rate between the
processor board and the writer chip, and also to minimize the required disk space to store the layout.
Since there are a large number of decoders operating in parallel on the writer chip, an important
requirement for any compression algorithm is to have an extremely low decoder complexity.

To this end, we have proposed a lossless layout compression algorithm for flattened, rasterized
data called Context Copy Combinatorial Coding (C4) [1]. The C4 algorithm automatically segments
layout data into repetitive and non-repetitive regions. Repetitive regions are compressed with 2D
copying similar to 2D-LZ [4], whereas non-repetitive regions are compressed with image context-
based prediction similar to lossless JPEG compression [16]. We have also devised Block C4, a
variant of C4, with up to hundred times faster encoding times, with little or no loss in compression
efficiency as compared to C4 [34]. Block C4 speeds up the segmentation step in C4 by using a
fixed block size.

C4 has been shown to outperform all existing techniques, in terms of compression efficiency,
especially under limited decoder buffer size, as required for hardware implementation [1]. The two
most competitive among the existing techniques have been shown to be ZIP and BZIP2. ZIP is an
implementation of the LZ77 compression [6] method used in a variety of compression programs
such as pkzip, zip, gzip, and WinZip. The ZIP algorithm treats the input as a generic stream of
bytes, and it takes advantage of repetitions in the byte stream to compress the data. BZIP2 is an
implementation of the Burrows-Wheeler Transform (BWT) [15]. The BZIP2 algorithm also treats
the input as a generic stream of bytes, but it uses a technique called block-sorting to permute a
sequence of bytes to make it easier to compress.

In this paper, we show compression efficiency results of Block C4 and competing techniques
such as ZIP and BZIP2 for the Poly, Active, Contact, Metal1, Via1, and Metal2 layers of a
complete industry 65 nm layout. While our past work has focused on characterizing the compression
efficiency of C4 and Block C4 on samples of a variety of industrial layouts, there has been no full
chip performance characterization of these algorithms. Specifically, we re-examine the comparison
between Block C4, ZIP, and BZIP2, only this time, statistics are presented for a full production
industry microprocessing chip, rather than individual images sampled here and there across a chip.

The layout used for these calculations are for an industry standard microprocessor designed for
the 65nm device generation. The specifications for manufacturing this design is shown in Table I.
The layout is 8.3mm × 14.1mm in size with polygons laid out on a 1nm grid, and it has 9325
cells. The gds size for Poly, Metal1, Metal2, Contact, Active, and Via are 460 MB, 482 MB, 1.3
GB, 476 MB, 449 MB, and 1.1 GB respectively. The appropriate pixel size for this generation is

TABLE I

SPECIFICATIONS FOR AN INDUSTRY MICROPROCESSOR DESIGNED FOR THE 65NM DEVICE GENERATION.

Manufacturing specifications Maskless lithography specifications
Minimum feature 65 nm Pixel size 32 nm
Edge placement 1 nm Pixel depth 6 bits (0-32) gray
Chip size 8.3 mm × 14.1 mm Pixel data 689 Gb

(one chip layer)
Wafer size 300 mm Wafer data 415 Tb

(one wafer layer)
Wafer throughput 1 wafer per 60s Average data 6.9 Tb/s over
(one layer) throughput one wafer layer

32nm×32nm, with 33 (0-32) levels of gray to achieve 1nm edge placement control, which requires
6-bits per pixel. The computed rasterized pixel image data is 0.7 Tb per chip layer, 415 Tb per
wafer layer. The manufacturing throughput requirement for lithography is 1 wafer layer per 60s.
Therefore, the required average maskless lithography data rate over one wafer layer is 6.9 Tb/s.

In previous work, individual layout clips are characterized as dense, sparse, repetitive, and non-
repetitive, with each term intuitively defined by visual inspection. This manual ad hoc characteri-
zation does not scale to a full chip run. Instead, we define here a metric for polygon complexity
which intuitively matches to the concept of “dense”, namely the number of polygon vertices within
a given area, or vertex density. If the number of vertices is large in a fixed area, then it must be
caused by either the presence of many distinct polygons, or polygons with very complex fragmented
edges. In either case, for the simple 3-pixel prediction mechanism used by C4 and BlockC4, the
number of vertices is directly correlated with the number of context-based prediction errors.

In terms of repetitions, it is difficult to find a single metric that decisively determines this for a
2D image and that is reasonable to compute for such a large data set. One method would have been
to use the same search based segmentation used by LZ77/C4 itself, but this defeats the purpose of
having an independent metric. Other techniques evaluated, such as image correlation and window-
based Discrete Cosine Transform, do not correlate well with the copy mechanism of C4 and LZ77
for which the cost of even correcting a small 1% intensity error is fairly high. Such techniques
are more appropriate for lossy compression techniques where such errors may be ignored. In the
end, we choose to use a metric taken from the layout hierarchy itself. The measure of repetition is
defined as the number of cells in a given region, minus the number of unique cells in that same
region. As an example, suppose a region contains 5 instances of cell A, 4 instances of cell B, and
1 instance of C, D, and E. Then the total number of cells in that region is 5 + 4 + 1 + 1 + 1 = 12
whereas the total number of unique cells is 5 (A-E), so the “repetition” of this region is 7.

In order to provide a visualization of the these metrics, Figure 2 shows a grayscale picture of the
vertex density metric as applied to the Metal 1 layer. It is easy to discern from this image regions
of very high vertex densities that are arranged in rectangular arrays throughout the design. These
are the various memory arrays of the microprocessor. The darker grays are likely to be logic circuit
areas, also arranged in rectangular arrays. Finally, the periphery regions are very dark, indicating
low corner densities.

A plot of “repetitions” visually looks the same as Figure 2. Although there are small differences
in the data which are detectable through data analysis, it is impossible to visually discern these

Fig. 2. A vertex density plot of Metal1 layer for a 65nm microprocessor. Each pixel represents a 32µm × 32µm block. Higher
vertex density blocks are assigned brighter pixels, and lower corner vertex density blocks are assigned darker pixels. Vertex densities
range from 0 to 20,000 per block.

differences. The visual similarity between a plot of “repetitions” and a plot of vertex density justifies
the fundamental rationale behind C4. Highly dense layout regions are also highly repetitive, and
therefore compress well with copying techniques. Non-repetitive regions tend to be sparse, and hence
compress well with context based prediction techniques, as polygon corners generally correspond
to prediction errors for Manhattan geometries.

For each of the 32µm×32µm blocks, rasterization is performed using the methodology described
in [42], where the pixel size is 32nm, and 33 gray levels are allowed (0-32) resulting in a fine 1nm
edge placement grid. One full chip layer contains 116,328 such blocks, equal to the number of pixels
in Figure 2. Each rasterized block is then passed through 3 compression algorithms, ZIP, BZIP2,
and Block C4 and compression and decompression statistics are gathered for each. This process is
then repeated for all the critical layers of the design: diffusion, also known as active, poly, contact,
metal1, via1 and metal2.

For this experiment, decoder buffer size of ZIP, BZIP2 and Block C4 are 4kB, 900 kB, and
1.7 kB respectively, chosen based on the tradeoff analysis presented in [34]. The small buffer size
used by Block C4 makes it particularly attractive for implementation in hardware for the datapath
architecture presented earlier.

II. FULL CHIP COMPRESSION STATISTICS

Table II contains a summary of these full chip runs. Column 1 is the name of the full-chip statistic
being reported. Column 2 is the chip layer which is rasterized and compressed. Columns 3, 4, and 5

TABLE II

FULL-CHIP COMPRESSION SUMMARY TABLE.

Statistic Layer ZIP BZIP2 Block C4
Avg. Compression Ratio Poly 12.6 15.3 14.1

Metal1 4.2 4.5 5.2
Metal2 6.1 7.2 7.2
Contact 14.1 16.0 23.2
Active 20.2 31.7 39.2
Via1 12.3 14.1 14.0

Min. Compression Ratio Poly 2.6 3.1 4.4
Metal1 0.96 1.3 1.7
Metal2 1.0 1.3 2.1
Contact 2.7 4.3 4.8
Active 8.1 11.1 12.8
Via1 2.2 3.6 4.5

Total Encoding Time Poly 42 min 2.3hrs 420 hrs
Metal1 45 min 2.3hrs 420 hrs
Metal2 45 min 1.9hrs 408 hrs
Contact 46 min 2.1hrs 419 hrs
Active 43 min 1.9hrs 418 hrs
Via1 46 min 2.1hrs 419 hrs

Total Decoding Time Poly 17 min 1.2hrs 36 min
Metal1 14 min 1.2hrs 35 min
Metal2 19 min 1.4hrs 38 min
Contact 15 min 1.4hrs 38 min
Active 15 min 1.3hrs 37 min
Via 15 min 1.4hrs 38 min

Percentage of Blocks Poly 25.33% 22.84% 23.66%
with Compression Metal1 65.73% 59.69% 55.12%
Ratio Below 10 Metal2 44.20% 44.88% 41.95%
(lower is better) Contact 0.73% 0.07% 0.00%

Active 7.85% 0.00% 0.00%
Via 4.94% 0.22% 0.14%

are the statistics for ZIP, BZIP2 and Block C4 respectively. Each row in the table represents a layer
statistic. The relevant statistics reported are the average compression ratio for the entire layer, the
minimum compression ratio over individual 32µm× 32µm blocks, the total encoding run time for
each layer, the total decoding run time for each layer, and the percentage of blocks with compression
ratio below 10.

Examining the average compression ratio for all layers, the compression efficiency of ZIP is
generally lower than that of BZIP2 and Block C4. BZIP2 and Block C4 are generally comparable to
each other. Considering that BlockC4 uses 2 or 3 orders of magnitude less decoder buffer to achieve
more or less the same compression efficiency as BZIP2, clearly it is the algorithm of choice for
hardware implementation. From layer to layer, Metal1 is most challenging to compress, followed

by Metal2, Via1, Poly, Contact, then Active. One different characteristic of Poly layout in this
particular design style is that all gates are oriented in a single direction, and are spaced apart by
a characteristic common pitch. Regularized design styles such as these can take better advantage
of the copy mechanism in C4 to achieve high compression efficiency. Of particular concern is the
average compression ratio of the Metal1 and Metal2 layers which are 5.2 and 7.2 respectively, which
fall below the target compression ratio of 10.

Another important metric to consider is the minimum compression ratio over all 32µm× 32µm
blocks for a layer. This is the most difficult block of any given layer to compress. In this case,
only the Active layer meets a target compression ratio of 10. The remaining 5 layers fall below that
target, and in the worst case block of Metal1, the compression ratio is 1.7.

III. MANAGING LOCAL VARIATIONS IN COMPRESSION RATIOS

So what are the implications of missing the compression target, and which is more relevant,
the average compression ratio, or the more pessimistic minimum compression ratio? The answer
depends on how well the maskless lithography system as a whole can absorb local variations in
data throughput. This can be accomplished by physically varying the throughput of the maskless
lithography writers, or by introducing various mechanisms in the datapath to absorb these variations
which we will speculate on later. By local variations, we are referring to inter-block variations of
compression ratios. In choosing our block size for analysis, we already assume there is at least a
single block buffer in the system so that we may ignore intra-block variations in compression ratio.
This buffer is distinct from the memory used by the decompression hardware. An example of such
a buffer is the “SRAM Writer Interface” found in [39].

A. Adjusting board to chip communication throughput
In the worst case, (a) the maskless lithography writers are fixed at a constant writing speed over all

blocks of a layer; and (b) the datapath cannot help absorb these inter-block variations of compression
ratios. In this case, the writing speed is limited by the data throughput of the minimum compression
ratio block. From the the maskless datapath presented earlier, the formula to compute actual wafer
throughput is rwafer = rcomm,max×Cmin/dwafer where rwafer is the wafer layer throughput, rcomm,max

is the maximum board to chip communication throughput, Cmin is the minimum compression ratio
for Block C4, and dwafer = 415 Tb is the total data for one wafer layer, from Table I.

Since dwafer is fixed and Cmin has been empirically determined for each layer, the total wafer
throughput depends entirely on rcomm,max which is the maximum data throughput of board to chip
communication. The reason maximum is emphasized is that this throughput is only required for
the minimum compression ratio block. For blocks of higher compression ratio, the communication
throughput can be reduced. As an example, if maximum communication throughput rcomm,max = 1
Tb/s, then the wafer layer throughput for Metal1 is 1 Tb/s × 1.7 / 415 Tb × 3600s/hr = 14.7 wafer
layers per hour. This same formula can be applied to each layer for various assumed values of
rcomm,max. The results of this exercise are shown in the third and forth column of Table III.

The first four columns of Table III are layer, minimum compression ratio, maximum board to
chip communication throughput, and wafer layer throughput, respectively. In the first 6 rows, we
assume a maximum communication throughput of 1 Tb/s and compute the wafer throughput for
various layers. In the next 6 rows, we target a wafer throughput of 60 wafer layers per hour, and
compute the maximum communication throughput needed to support this writing rate for each layer.

TABLE III

MAXIMUM COMMUNICATION THROUGHPUT VS. WAFER LAYER THROUGHPUT FOR VARIOUS LAYERS IN THE WORST CASE

SCENARIO, WHEN DATA THROUGHPUT IS LIMITED BY THE MINIMUM COMPRESSION RATIO FOR BLOCK C4.

Layer Cmin rcomm,max rwafer Cavg rcomm,avg rwafer

(Tb/s) (wafer · layer/hr) Tb/s (wafer · layer/hr)
Poly 4.4 1 38.2 14.1 1 122
Metal1 1.7 1 14.7 5.2 1 45.1
Metal2 2.1 1 18.2 7.2 1 62.5
Contact 4.8 1 41.6 23.2 1 201
Active 12.8 1 111 39.2 1 340
Via1 4.5 1 39.0 14.0 1 121
Poly 4.4 1.57 60 14.1 0.49 60
Metal1 1.7 4.07 60 5.2 1.33 60
Metal2 2.1 3.29 60 7.2 0.96 60
Contact 4.8 1.44 60 23.2 0.30 60
Active 12.8 0.54 60 39.2 0.18 60
Via1 4.5 1.54 60 14.0 0.49 60

As a point of reference, a state-of-the-art HyperTransport 3.0 (HT3) link offers 0.32 Tb/s maximum
throughput [40]. Examining the third column of Table III for Metal1 with a target wafer throughput
of 60 wafers per hour, a maskless datapath requires at least d4.07/0.32e = 13 such links to achieve
the required communications throughput. Implementing 13 links is costly, in terms of both circuit
power dissipation and chip area [34] [23]. However, a chip designer may be able to conserve power
by taking advantage of the fact that the maximum communication throughput is only needed for a
few blocks. The average communication throughput, as we shall see shortly, is significantly lower.

The equation relating wafer throughput rwafer to average board to chip communication throughput
rcomm,avg and average compression ratio Cavg is straightforward: rwafer = rcomm,avg × Cavg/dwafer.
To be precise, the average is computed over all blocks of an wafer layer. Using this formula, we
can relate wafer throughput to average communication throughput for various layers. The results
are presented in the last three columns of Table III. The columns are average compression ratio,
average board to chip communication throughput, and wafer layer throughput, respectively. The first
6 rows assume an average communications throughput of 1 Tb/s, and the next 6 rows target a wafer
throughput of 60 wafer layers per hour.

Since the average compression ratio is significantly higher than the minimum compression ratio
for all layers, the average communication throughput is also significantly lower than the maximum
communication throughput computed previously. Continuing our previous example using a HT3
link as reference, for Metal1 with a target wafer throughput of 60 wafers per hour, a maskless
datapath requires only 1.33/0.32 = 4.2 links on average. So even though 13 links are required to
accommodate the maximum throughput, on average only 4.2/13 = 32% of the capacity is being
used. The maskless datapath can take advantage of this by powering down unused communication
links to conserve power. However, that still leaves an area cost of implementing 13 links in the first
place. What can be done to effectively smooth the data throughput so that communication links can
be utilized more effectively?

TABLE IV

EFFECT OF STATISTICAL MULTIPLEXING USING N PARALLEL DECODER PATHS ON BLOCK C4 COMPRESSION RATIO AND

COMMUNICATION THROUGHPUT FOR METAL1.

N Cmin,N rcomm,max(Tb/s) rwafer(wafer · layer/hr) # of HT3 links
1 1.7 4.07 60 13
2 2.3 3.01 60 10
10 2.5 2.77 60 9
100 3.3 2.10 60 7
1000 4.9 1.41 60 5
116,328 5.2 1.33 60 5

B. Statistical multiplexing using parallel decoders
An important feature to take advantage of is the opportunity to utilize averaging inherent in

the parallel design of the maskless lithography datapath. As described in [41], the decoder in
Figure 1 is implemented as a parallel array of decoder paths, i.e. multiple blocks are being decoded
simultaneously. In its simplest form, the communication throughput is evenly divided among the
parallel decoder paths. However, additional logic, such as packet scheduling, can be implemented
to allocate communication throughput to each decoder path based on need. As such, a decoder path
working on a block with low compression ratio is allocated more communication packets than a
decoder path working on a block with high compression ratio. The result is that inter-block variations
in compression ratio are effectively statistically multiplexed by the number of decoder paths in the
system.

Suppose we have N decoder paths working in parallel on N adjacent blocks in a row. In com-
munication order, we form M frames of N blocks per frame, where MN ≥ 116, 326. Statistical
multiplexing effectively allows us to average the compression ratio over each frame. We can then
compute the minimum over all frames and denote this value as Cmin,N . Note, that by definition
Cmin,1 = Cmin and Cmin,116,328 = Cavg. Cmin,N , rwafer and rcomm,max are related through this
equation: rwafer = rcomm,max × Cmin,N/dwafer.

Using different values for N, we compute the Cmin,N and rcomm,max for Block C4, Metal1,
and a target throughput of 60 wafer layers per hour. These results are summarized in Table IV.
In columns are the number of decoder paths N, the minimum frame compression ratio Cmin,N , the
maximum board to chip communications throughput rcomm,max, the wafer throughput rwafer, and the
number of HT3 links needed to support the communications throughput. Clearly, Cmin,N increases
as the number of decoder paths N increases. At N = 1000, Cmin,N = 4.9 which is very close to
Cavg = 5.2, demonstrating the strength of the statistical multiplexing approach. The corresponding
maximum communication throughput is 1.41 Tb/s which can be met with d1.41/0.32e = 5 HT3
links.

C. Adding buffering to the datapath
Another way to smooth the data throughput is to introduce on-chip memory buffer at the output

of the communications channel before decompressing the data in Figure 1. This buffer absorbs
variations in data throughput caused by inter-block variations of compression ratios. For blocks with
high compression ratios, excess communication throughput is used to fill the buffer. For blocks with

low compression ratio, data is drained from the buffer to supplement the communication channel.
Intuitively, the larger the buffer is, the more variations it can absorb, and the lower is the required
maximum communication throughput. On the other hand, the primary advantage of spending area
on a buffer in the first place is to save on chip area devoted to communication. Therefore, there
is a tradeoff between the area needed by the buffer and the additional area saved by reducing the
number of communication links.

We can roughly estimate the amount of buffer to add using the following steps. Suppose we
add sufficient buffer equivalent to the minimum compressed block. For Metal1, this buffer is
(1000× 1000× 6bits)/1.7 = 3.5Mb in size for Block C4. Now suppose, in communication order,
we group blocks pairwise and compute each pair’s compression ratio, followed by computing the
minimum over all pairs Cmin,pair. This number is guaranteed to be higher than Cmin and lower than
Cavg. Empirically for Metal1, Cmin,pair = 2.3 for Block C4, assuming raster scan order. For this
system, the following inequality holds: rwafer ≥ rcomm,max × Cmin,pair/dwafer. That is, at the very
least, we should be able to replace Cmin with the higher Cmin,pair for relating wafer throughput
to the maximum communication throughput. Continuing our previous example for Metal1 with a
target wafer throughput of 60 wafers per hour, the result is rcomm,max ≤ 3.01Tb/s, equivalent to
d3.01/0.32e = 10 HT3 links. Compared with the 13 HT3 links for zero buffering, this is a reduction
of 3 links for 3.5Mb of buffering, which seems to be worthwhile tradeoff. Clearly, more systematic
analysis of such tradeoffs are necessary for any future practical maskless lithography systems.

D. Distribution of low compression blocks
The computation of rcomm,max in the previous paragraph is a conservative upper bound, in that

it focuses on the worst case where low compression ratio blocks may be clustered together. Thus,
we require that any drain on the buffer caused by a low compression ratio block to be immediately
refilled by the adjacent block. If low compression blocks are spread far apart from each other
by coincidence, then rcomm,max may be significantly lowered. Furthermore, if the writing system
allows for limited re-ordering of the blocks, then this could be used to intentionally spread the low
compression ratio blocks apart. As an example, some maskless lithography systems are written in
a step-and-scan mode, where multiple blocks form a frame which is written in a single scan [41].
In this case, blocks may be re-ordered within a frame to smooth the data rate.

Figure 3 is a visualization of the compression ratio distribution of Block C4 for the Metal1
layer. Brighter pixels are blocks with low compression ratios and darker pixels are blocks with high
compression ratios. Notice that repetitive memory arrays on the bottom half are relatively dim. Block
C4 compresses these repetitive regions effectively. The less regular, but relatively dense layout are
clustered in distinct bright regions in the middle. This geographic distribution should be taken into
consideration when deciding on the mechanism to smooth inter-block variations.

E. Modulating the writing speed
Another possibility is to modulate the writing speed of the maskless lithography writers to match

the inter-block variations in compression ratio. For example, it is conceivable to divide blocks into
discrete classes based on the range of compression ratios they fall into. The lithography writers
would then switch between a discrete number of writing speeds depending on the class of block.
The “high” compression ratio blocks are written with “high” speed, whereas “low” compression ratio
blocks are written with “low” speed. Due to overhead in switching speeds, it may not be feasible

Fig. 3. A visualization of the compression ratio distribution of Block C4 for the Metal1 layer. Brighter pixels are blocks with
low compression ratios, while darker pixels are blocks with high compression ratios. The minimum 1.7 compression ratio block is
marked by a white crosshair (+).

to vary the writing speed on a block-by-block basis. In this case, the writers would change speed
based on the minimum compression ratio within a contiguous group of blocks.

Whichever mechanism is used to smooth the data throughput, the effectiveness depends on the
distribution of compression ratios across all blocks of a layer. Intuitively, the higher the number
of low compression ratio blocks, the more difficult it is to lower the maximum communication
throughput. Let us examine the distribution of these variations.

IV. DISTRIBUTION OF COMPRESSION RATIOS

Figure 4(a) shows the histogram of compression ratios for the full-chip Poly layer for Block
C4, ZIP, and BZIP2. The horizontal axis is the compression ratio bins ranging from 0 to 40 in
increments of 1. The vertical axis is the count of the number of blocks which fall into each bin. The
histogram of Block C4 is plotted in red with diamond markers, BZIP2 in green with square markers,
and ZIP in blue with triangular markers. The first observation to be made about this histogram is
that the distribution of compression ratios is multi-modal and non-Gaussian. Second, note that the
distribution has an extremely long tail beyond 30. In general, the layout contains a large amount of
blank regions filled by a few large polygons. The information content in these regions are low, and
compress easily.

An alternative view of the same data is presented in Figure 4(b). In this case, we plot the cumulative
distribution of blocks on the vertical axis, against the compression ratio on the horizontal axis. Figure

Histogram

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

Compression Ratio

Fr
eq

ue
nc

y

Block C4

BZIP2

ZIP

(a) Histogram

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

Compression Ratio

Cu
m

ul
at

iv
e D

ist
rib

ut
io

n

BlockC4
BZIP2
ZIP

(b) Cumulative Distribution Function

Fig. 4. Compression ratios for Block C4, BZIP2, and ZIP for the Poly Layer; (a) Histogram; (b) CDF

4(b) is essentially the normalized integral of the plot in Figure 4(a). The cumulative distribution
function (CDF) of the compression ratio of Block C4 is plotted in red with diamond markers, BZIP2
in green with square markers, and ZIP in blue with triangular markers. A point on the CDF curve
represents the percentage of blocks Y with compression ratio less than X. Generally speaking, when
the curve shifts to the right, the overall compression efficiency of a layer is improved.

Of particular interest are compression ratio bins at the low end of the spectrum, as these are our
throughput bottlenecks. In Figure 4(b), 25.3% of ZIP blocks, 22.8% of BZIP2 blocks, and 23.7% of
Block C4 blocks have compression ratio less than 10. Therefore, in the low end of the compression
spectrum, Block C4 and BZIP2 have about the same compression efficiency, and both have better
efficiency than ZIP. In addition, even though the reported minimum compression ratio in Table II
for Block C4 and BZIP2 are 4.4 and 3.1 respectively, the CDF curve clearly shows that very few
blocks have compression ratios less than 5. In fact, for this poly layer, only 7 of the 116,328 blocks
have compression ratio’s less than 5 for Block C4 and BZIP2. These 7 blocks are clustered in 2
separate regions, and within a region no two blocks are adjacent to each other. The total size for
these 7 blocks compressed by Block C4 is 9.1 Mb. Therefore, if we have enough memory buffer
to simply store all 7 compressed blocks then we can effectively use 5 as the minimum compression
ratio for Poly. On the other hand, 2.8% ≈ 1800 of ZIP blocks have compression ratio less than 5.
Since there are more variations, the system has to work harder to absorb them.

An alternative to absorbing the variation is to re-examine the compression algorithm to look for
ways to compress these difficult blocks more efficiently. Figures 5 and 6 are samples of such hard
to compress blocks for Poly and Metal1 layout. The key observation to make is that these blocks are
dense in polygon count, and yet are not regular repeated structures, although some repetition does
exist. Metal1 is more dense and less repetitive, and therefore has significantly lower compression

Fig. 5. A block of the poly layer which has a compression ratio of 2.3, 4.0, and 4.4 for ZIP, BZIP2, and Block C4 respectively.

Fig. 6. A block of the M1 layer which has a compression ratio of 1.1, 1.4, and 1.7 for ZIP, BZIP2, and Block C4 respectively.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

Compression Ratio

Cu
m

ul
at

iv
e D

ist
rib

ut
io

n

BlockC4
BZIP2
ZIP

(a) Contact

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

Compression Ratio

Cu
m

ul
at

iv
e D

ist
rib

ut
io

n

BlockC4
BZIP2
ZIP

(b) Via1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

Compression Ratio

Cu
m

ul
at

iv
e D

ist
rib

ut
io

n

BlockC4
BZIP2
ZIP

(c) Active

Fig. 7. CDF of compression ratios for Block C4, BZIP2, and ZIP for (a)Contact; (b)Via 1; (c)Active;

ratio than Poly. Increasing the buffer size of BlockC4 from 1.7 kB to 656 kB does improve the
compression efficiency, but not by a commensurate amount. For the Poly block in Figure 5, the
Block C4 compression ratio improves from 4.4 to 5.1, and for the Metal1 block in Figure 6, the
Block C4 compression ratio improves from 1.7 to 1.9.

Another way to gauge the difficulty of compressing the blocks in Figures 5 and 6 is to compute the
entropy. Entropy is the theoretical minimum average number of bits needed to losslessly represent
each pixel, assuming pixels are independently and identically distributed. This assumption does
not hold for layout pixel data. Nonetheless, entropy still serves as a useful point of reference.
For Figure 5, the entropy is 3.7 bits per pixel (bpp) which corresponds to a compression ratio of
6bpp/3.7bpp = 1.6. For Figure 6, the entropy is 4.8 bpp, which corresponds to a compression ratio
of 6bpp/4.8bpp = 1.3. Huffman coding realizes a compression ratio very close to entropy: 1.6 and
1.2 for Figures 5 and 6 respectively.

Another alternative is to systematically change the layout so as to improve its compression
efficiency. It is usually possible to preserve the same design intent using a different physical layout. If
the design can be made more “compression friendly” in these difficult blocks, then the compression
efficiency can be improved.

For completeness of analysis, Figure 7 shows CDF plots of Contact, Active and Via1, and 8
shows the same for Metal 1, and Metal2 layers. Examining these plots, Block C4 clearly has higher
compression efficiency for Contact, Active, and Metal1 layers than both BZIP2 and ZIP. For the
Via1 and Metal2 layers, the compression efficiency of Block C4 is comparable to BZIP2, particularly
in the region of compression ratios less than 10. Both Block C4 and BZIP2 have higher efficiency
than ZIP.

Comparing the curves between levels, clearly Metal1 is the most difficult to compress. For a
given low compression ratio threshold, for example 5, Metal1 has the largest percentage of blocks
falling below that threshold, i.e. 24% for Block C4. Metal2 follows with 0.81% for Block C4. The
remaining layers contain no blocks below that threshold. Table V lists the complete numbers for
all layers and compression algorithms using a low compression ratio threshold of 5. The reason
Metal1 and Metal2 are particularly challenging is simple. These layers are the primary wiring layers
connecting device to device, and as anyone who has untangled cables behind a personal computer

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

Compression Ratio

Cu
m

ul
at

iv
e D

ist
rib

ut
io

n

BlockC4
BZIP2
ZIP

(a) Metal 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

Compression Ratio

Cu
m

ul
at

iv
e D

ist
rib

ut
io

n

BlockC4
BZIP2
ZIP

(b) Metal 2

Fig. 8. CDF of compression ratios for Block C4, BZIP2, and ZIP for (a)Metal 1; (b)Metal 2;

TABLE V

PERCENTAGE OF BLOCKS WITH COMPRESSION RATIO LESS THAN 5.

Statistic Layer ZIP BZIP2 Block C4
Percentage of Blocks Poly 0.03% 0.00% 0.00%
with Compression Metal1 44.63% 34.20% 23.72%
Ratio Below 5 Metal2 4.33% 3.75% 0.81%
(lower is better) Contact 0.02% 0.00% 0.00%

Active 0.00% 0.00% 0.00%
Via 0.01% 0.00% 0.00%

can attest, wires quickly turn into a complex mess if not carefully managed. Intuitively, this means
that the wiring layers tend to be more dense, and less regular than the other chip design layers,
making them the most difficult to compress. The density of polygon corners makes it difficult for
context prediction to achieve good compression, and the irregularity of the design makes it difficult
for copying to achieve good compression. The Block C4 segmentation algorithm is stuck between
the proverbial rock and a hard place. Nonetheless, to the extent that some compression has been
achieved, the algorithm does benefit from having both prediction and copying. As an example,
turning off copying reduces the Block C4 compression ratio to 1.4 from 1.7 for the Metal1 block
shown in Figure 6.

Another question we can ask is, if we can exclude the 100 most difficult to compress blocks out
of 116,328 blocks, either via buffering or some other mechanism, what is the minimum compression
ratio for each layer? The result is shown in Table VI. For Metal1, Metal2, and Active, there is little
change. However, for Poly, Contact and Via, there is a significant improvement. For these layers,

TABLE VI

MINIMUM COMPRESSION RATIO EXCLUDING THE LOWEST 100 COMPRESSION RATIO BLOCKS.

Statistic Layer ZIP BZIP2 Block C4
Min. Compression Ratio Poly 2.6 3.1 4.4
over all blocks Metal1 0.96 1.3 1.7

Metal2 1.0 1.3 2.1
Contact 2.7 4.3 4.8
Active 8.1 11.1 12.8
Via1 2.2 3.6 4.5

Min. Compression Ratio Poly 4.1 5.2 5.2
excluding the lowest Metal1 1.0 1.4 1.8
100 compression Metal2 1.4 2.5 2.5
ratio blocks Contact 8.1 10.0 19.8

Active 8.1 11.1 12.9
Via 8.2 10.5 11.0

the minimum compression ratio is pessimistic due to a small number of special cases. If these small
number of variations can be absorbed by the maskless lithography system, or by systematically
altering the design to be more compression-friendly, the overall wafer throughput can be improved
significantly.

V. COMPARISON OF ENCODING AND DECODING TIMES

Examining the encoding times in Table II, clearly ZIP is the fastest, BZIP2 is about 3 times
slower than ZIP, and Block C4 about 200 times slower than BZIP2. All runtimes are reported for
an Athlon64 3200+ Windows XP desktop with 1 GB of memory. BlockC4 is implemented in C#
language. ZIP and BZIP2 are commercially available software, written and optimized in C code.

Part of the reason that Block C4 is so much slower is the inherent complexity of the Copy/Context
prediction segmentation code, and another part is the lack of code optimization. All 3 algorithms
have fairly stable and predictable runtimes which are independent of the layer. This is a significant
advantage over the layer dependent and extremely long runtimes of C4 we have seen previously
[34].

It is also worth noting that each of the 116,328 blocks are independently compressed and decom-
pressed, which supports the highly parallel decoder implementation. Similarly, the total compression
runtime can be reduced by parallelizing the run using multiple CPUs and dividing the blocks evenly
between CPUs.

Examining decoding times, ZIP is again the fastest, but here Block C4 is faster than BZIP2 by a
factor of 2. Considering Block C4’s decode buffer requirement is 2 orders of magnitude less than
BZIP2, it is clearly the best choice for hardware implementation. Block C4 is a highly asymmetric
algorithm in terms of encoder vs. decoder complexity because segmentation is not required by the
decoder, and consequently, its decoding speed is about 800 times faster than its encoding speed.

VI. DISTRIBUTION OF COMPRESSION RATIOS FOR AN ASIC
So far, our full chip characterization of Block C4 has been focused on an industry microprocessor.

Since maskless lithography is likely to impact low volume ASIC manufacturing before it is used for

Fig. 9. Histogram of compression ratios for BlockC4 for Metal 1 (86%), Metal 2 (86%), and Metal 1 (90%) layers of the LDPC
chip.

high volume general purpose chips such as a microprocessor, it would be interesting to see whether
the low compression ratio for Metal 1 and Metal 2 layers seen for the microprocessor carries over
to an ASIC. To this end, we have applied Block C4 to a Low Density Parity Check (LDPC) decoder
ASIC chip in the 65 nm technology, with layout placement and routing generated using Synopsys
Astro. Assuming a pixel size of 32 nm, each block is 1024 × 1024 pixels, or 32 µm × 32µm.
Figure 9 shows the histogram of compression ratio for Metal 1 and Metal 2 layers. For the Metal
1 layer, we have applied the routing tool twice in order to generate two different layout densities,
namely 86 % and 90 %. The chip contains 1291 cells. The gds sizes for Metal 1 (86%), Metal 1
(90%) and Metal 2 are 536 MB, 517 MB and 779 MB, respectively.

As expected, the compression ratio for Metal 1 drops as the density goes up. In addition, the
distribution of compression ratio for Metal 1 is to the left of that of Metal 2 indicating that Metal 1
blocks are harder to compress than those of Metal 2. Metal 1 contains optimally dense wires inherent
to each standard cell and between neighboring cells, while Metal 2 wires are used to connect nearby
cells. Thus, despite the presence of easily-compressible Vdd and ground rails on the Metal 1 layer,
Metal 1 is consistently more difficult to compress than Metal 2, which often contains large blank
spaces in areas where inter-cell routing is straightforward.

More importantly, the minimum compression ratio for Metal 1 (86%), Metal 1 (90%) and Metal
2 (86%) are 14.3, 13.2 and 18.7 respectively. These minimum compression ratios are considerably
higher than those of the microprocessor considered earlier. The 1024× 1024 blocks corresponding
to minimum compression ratio for M1 (90%) and M2 (86%) are shown in Figures 10(a) and 10(b)
respectively.

VII. DISCUSSION

In summary, compression can play an important role in most layers, and its shortcomings can
be mitigated through careful engineering of the overall maskless lithography datapath and design

(a) Metal 1 (90%) (b) Metal 2 (86%)

Fig. 10. Lowest compression ratio blocks of LDPC chip for (a) Metal 1 (90%) with CR of 13.2; (b) Metal 2 (86 %) with CR of
18.7.

layout. In addition, Block C4 has shown itself as a strong candidate for implementation in the
maskless lithography datapath shown in Figure 1, with the lowest decoder buffering requirement of
1.7 KB [1], low decoder complexity in software, high compression efficiency, and a reasonable and
predictable compression speed in software.

To use Block C4 in a maskless lithography datapath, we need to transform the implementation of a
Block C4 decoder from software to silicon hardware. These developments, including decomposition
of the algorithm into functional blocks, area, and power are discussed in [34], [42].

VIII. ACKNOWLEDGEMENT

This research is conducted under the Research Network for Advanced Lithography, supported
jointly by SRC (01-MC- 460) and DARPA (MDA972-01-1-0021). The authors wish to acknowledge
the contributions of Zhengya Zhang, Hsin-I Liu, Prof. Borivoje Nikolic, Brian Richards, the students,
faculty and sponsors of the Berkeley Wireless Research Center, the National Science Foundation
Infrastructure Grant No. 0403427, wafer fabrication donation from STMicroelectronics.

REFERENCES

[1] V. Dai and A. Zakhor, “Advanced Low-complexity Compression for Maskless Lithography Data”, Emerging Lithographic
Technologies VIII, Proc. of the SPIE Vol. 5374, pp. 610–618, 2004.

[2] V. Dai and A. Zakhor, “Lossless Compression Techniques for Maskless Lithography Data”, Emerging Lithographic Technologies
VI, Proc. of the SPIE Vol. 4688, pp. 583–594, 2002.

[3] V. Dai, “Binary Lossless Layout Compression Algorithms and Architectures for Direct-write Lithography Systems”,
Master’s Thesis, Department of Electrical Engineering and Computer Sciences, U.C. Berkeley, 2000. http://www-
video.eecs.berkeley.edu/papers/vdai/ms-thesis.pdf.

[4] V. Dai and A. Zakhor, “Lossless Layout Compression for Maskless Lithography Systems”, Emerging Lithographic Technologies
IV, Proc. of the SPIE Vol. 3997, pp. 467–477, 2000.

[5] N. Chokshi, Y. Shroff, W. G. Oldham, et al., “Maskless EUV Lithography”, Int. Conf. Electron, Ion, and Photon Beam
Technology and Nanofabrication, Macro Island, FL, June 1999.

[6] J. Ziv, and A. Lempel, “A universal algorithm for sequential data compression”, IEEE Trans. on Information Theory, IT-23 (3),
pp. 337–43, 1977.

[7] J. Rissanen and G. G. Langdon, “Universal Modeling and Coding”, IEEE Trans. on Information Theory, IT-27 (1), pp. 12–23,
1981.

[8] CCITT, ITU-T Rec. T.82 & ISO/IEC 11544:1993, Information Technology – Coded Representation of Picture and Audio
Information – Progressive Bi-Level Image Comp., 1993.

[9] P. G. Howard, F. Kossentini, B. Martins, S. Forchammer, W. J. Rucklidge, “The Emerging JBIG2 Standard”, IEEE Trans.
Circuits and Systems for Video Technology, Vol. 8, No. 7, pp. 838-848, November 1998.

[10] V. Dai and A. Zakhor, “Binary Combinatorial Coding”, Proc. of the Data Compression Conference 2003, p. 420, 2003.
[11] T. M. Cover, “Enumerative Source Coding”, IEEE Trans. on Information Theory, IT-19 (1), pp. 73–77, 1973.
[12] S. W. Golomb, “Run-length Encodings”, IEEE Transactions on Information Theory, IT-12 (3), pp. 399–401, 1966.
[13] L. Oktem and J. Astola, “Hierarchical enumerative coding of locally stationary binary data”, Electronics Letters, 35 (17),

pp. 1428–1429, 1999.
[14] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes, Second Edition, Academic Press, 1999.
[15] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm”, Technical report 124, Digital Equipment

Corporation, Palo Alto CA, 1994.
[16] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm: principles and standardization

into JPEG-LS”, IEEE Transactions on Image Processing, 9 (8), pp. 1309–1324, 2000.
[17] P. G. Howard, “Text image compression using soft pattern matching”, Computer Journal, vol.40, no.2-3, Oxford University

Press for British Comput. Soc, UK, 1997, pp.146-56.
[18] P. Fränti and O. Nevalainen, “Compression of binary images by composite methods based on the block coding”, Journal of

Visual Communication and Image Representation, 6 (4), 366-377, December 1995.
[19] G. G. Langdon, Jr., J. Rissanen, “Compression of black-white images with arithmetic coding”, IEEE Transactions on

Communications, vol.COM-29, no.6, June 1981, pp.858-67. USA.
[20] I. Ashida, Y. Sato, and H. Kawahira, “Proposal of new layout data format for LSI patterns”, Photomask and X-Ray Mask

Technology VI, 3748, 205-213, SPIE, 1999.
[21] Amir Said and William A. Pearlman, “A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees”,

IEEE Transactions on Circuits and Systems for Video Technology, 6, pp. 243-250, 1996.
[22] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy Codes”, Proceedings of the IRE, 40(9), pp. 1098-

1101, September 1952.
[23] K. Chang, S. Pamarti, K. Kaviani, E. Alon, X. Shi, T. J. Chin, J. Shen, G. Yip, C. Madden, R. Schmitt, C. Yuan, F. Assaderaghi,

and M. Horowitz, “Clocking and Circuit Design for A Parallel I/O on A First-Generation CELL Processor,” International Solid-
State Circuit Conference, February 2005.

[24] International Technology Roadmap for Semiconductors 2005 Edition, International Technology Roadmap for Semiconductors
(ITRS), 2005.

[25] “Open Artwork System Interchange Standard”, SEMI P39-0304E2, 2003.
[26] C. Chen, C. Wei, “VLSI design for LZ-based data compression”, IEE Proc. - Circuits, Devices and Systems, vol. 146, no. 5,

pp. 268-277, Oct. 1999.
[27] M. J. Laszlo, Computational Geometry and Computer Graphics in C++, Prentice-Hall Inc., Upper Saddle River, NJ, 1996, pp.

173-202.
[28] E. M. Stone, J. D. Hintersteiner, W. A. Cebuhar, R. Albright, N. K. Eib, A. Latypov, N. Baba-Ali, S. K. Poultney, E. H. Croffie

“Achieving mask-based imaging with optical maskless lithography,” in Emerging Lithographic Technologies X, Proceedings of
the SPIE, vol. 6151, 2006, pp. 665-676.

[29] A. Murray, F. Abboud, F. Raymond, C. N. Berglund, “Feasibility Study of New Graybeam Writing Strategies for Raster Scan
Mask Generation,” J. Vac. Sci. Technol., 11, p. 2390, 1993.

[30] J. Chabala, F. Abboud, C. A. Sauer, S. Weaver, M. Lu, H. T. Pearce-Percy, U. Hofmann, M. Vernon, D. Ton, D. M. Cole,
R. J. Naber, “Extension of graybeam writing for the 130nm technology node,” Proceedings of the SPIE, Vol. 3873, p.36-48.

[31] D. H. Dameron, C. Fu, R. F. W. Pease, “A multiple exposure strategy for reducing butting errors in a raster-scanned electron-
beam exposure system,” J. Vac. Sci. Technol. B 6(1), pp. 213-215, 1988.

[32] P. C. Allen, “Laser pattern generation technology below 0.25um,” Proceedings of the SPIE 3334, pp. 460-468.
[33] H. Martinsson, T. Sandstrom, “Rasterizing for SLM-based mask making and maskless lithography,” Proceedings of the SPIE

5567, pp.557-564.
[34] H. Liu, V. Dai, A. Zakhor, B. Nikolic, “Reduced Complexity Compression Algorithms for Direct-Write Maskless Lithography

Systems,” SPIE Journal of Microlithography, MEMS, and MOEMS (JM3), Vol. 6, 013007, Feb. 2, 2007.
[35] T. M. Cover, J. A. Thomas, Elements of Information Theory, John Wiley & Sons. Inc., pp. 36-37, 152-153, 1991.

[36] V. Dai, A. Zakhor, “Lossless Compression of VLSI Layout Image Data” in Document and Image Compression, edited by M.
Barni, 2006, pp. 413 - 426, CRC press.

[37] A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography, vol. 47 of Tutorial Texts in Optical Engineering,
SPIE Press, Bellingham. WA, 2001.

[38] J. Seward, bzip2 Home, http://www.bzip.org, 1996.
[39] B. Nikolic, B. Wild, V. Dai, Y. Shroff, B. Warlick, A. Zakhor, W. G. Oldham, “Layout Decompression Chip for Maskless

Lithography” in Emerging Lithographic Technologies VIII, Proceedings of the SPIE, San Jose, California, Vol. 5374, No. 1,
pp. 1092-1099, 2004.

[40] HyperTransport Consortium, http://www.hypertransport.org.
[41] B. Wild, Data Handling Circuitry for Maskless Lithography Systems, Master Thesis, UC Berkeley, 2001.
[42] V. Dai, Data Compression for Maskless Lithography Systems: Architecture, Algorithms and Implementation, PhD thesis, UC

Berkeley, 2008.

LIST OF TABLES

I Specifications for an industry microprocessor designed for the 65nm device generation. 3
II Full-chip compression summary table. 5
III Maximum communication throughput vs. wafer layer throughput for various layers in

the worst case scenario, when data throughput is limited by the minimum compression
ratio for Block C4. 7

IV Effect of statistical multiplexing using N parallel decoder paths on Block C4 compres-
sion ratio and communication throughput for Metal1. 8

V Percentage of blocks with compression ratio less than 5. 14
VI Minimum compression ratio excluding the lowest 100 compression ratio blocks. 15

LIST OF FIGURES

1 System architecture of a data-delivery system for maskless lithography using compres-
sion to minimize data transfer rates. 2

2 A vertex density plot of Metal1 layer for a 65nm microprocessor. Each pixel represents
a 32µm× 32µm block. Higher vertex density blocks are assigned brighter pixels, and
lower corner vertex density blocks are assigned darker pixels. Vertex densities range
from 0 to 20,000 per block. 4

3 A visualization of the compression ratio distribution of Block C4 for the Metal1 layer.
Brighter pixels are blocks with low compression ratios, while darker pixels are blocks
with high compression ratios. The minimum 1.7 compression ratio block is marked by
a white crosshair (+). 10

4 Compression ratios for Block C4, BZIP2, and ZIP for the Poly Layer; (a) Histogram;
(b) CDF . 11

5 A block of the poly layer which has a compression ratio of 2.3, 4.0, and 4.4 for ZIP,
BZIP2, and Block C4 respectively. 12

6 A block of the M1 layer which has a compression ratio of 1.1, 1.4, and 1.7 for ZIP,
BZIP2, and Block C4 respectively. 12

7 CDF of compression ratios for Block C4, BZIP2, and ZIP for (a)Contact; (b)Via 1;
(c)Active; . 13

8 CDF of compression ratios for Block C4, BZIP2, and ZIP for (a)Metal 1; (b)Metal 2; . 14
9 Histogram of compression ratios for BlockC4 for Metal 1 (86%), Metal 2 (86%), and

Metal 1 (90%) layers of the LDPC chip. 16
10 Lowest compression ratio blocks of LDPC chip for (a) Metal 1 (90%) with CR of 13.2;

(b) Metal 2 (86 %) with CR of 18.7. 17

PLACE
PHOTO
HERE

Vito Dai received the B.S. degree in electrical engineering at California Institute of Technology in 1998,
and the M.S. and Ph.D. degree in electrical engineering at University of California at Berkeley in 2000 and
2008, respectively. He is currently a Sr. Process Engineer in the OPC/DFM Automation group at GLOBAL-
FOUNDRIES where he works on developing new methodologies for improving the lithographic printability of
designs through 2D pattern analysis for the leading edge semiconductor manufacturing.

PLACE
PHOTO
HERE

Avideh Zakhor joined the faculty at UC Berkeley in 1988 where she is currently a Professor of Electrical
Engineering and Computer Sciences. Her areas of interest include theories and applications of signal, image
and video processing, 3D computer vision, and multimedia networking. She has won a number of best paper
awards, including the IEEE Signal Processing Society in 1997 and 2009, IEEE Circuits and Systems Society
in 1997 and 1999, international conference on image processing in 1999, Packet Video Workshop in 2002, and
IEEE Workshop on Multimodal Sentient Computing in 2007. She holds 6 U.S. patents, and is the co-author
of three books with her students. She has been a PI or co-PI of four different MURI projects.

Prof. Zakhor received the B. S. degree from California Institute of Technology, Pasadena, and the S. M. and
Ph. D. degrees from Massachusetts Institute of Technology, Cambridge, all in electrical engineering, in 1983,

1985, and 1987 respectively. She was a General Motors scholar from 1982 to 1983, was a Hertz fellow from 1984 to 1988, received
the Presidential Young Investigators (PYI) award, and Office of Naval Research (ONR) young investigator award in 1992. In 2001,
she was elected as IEEE fellow and received the Okawa Prize in 2004.

She co-founded OPC technology in 1996, which was later acquired by Mentor Graphics (Nasdaq: MENT) in 1998, Truvideo in
2000, and UrbanScan Inc. in 2005 which was acquired by Google in 2007.

PLACE
PHOTO
HERE

George Cramer received the B.E. degree in electrical engineering from The Cooper Union in 2007. He will
complete his M.S. degree at U.C. Berkeley in Electrical Engineering in 2009, and is currently a member
of the Video and Image Processing Laboratory. His research interests include analog integrated circuits,
communications, and energy.

