
Binary Lossless Layout Compression Algorithms and Architectures for
Direct-write Lithography Systems

by
Vito Dai

Video and Image Processing Lab
Department of Electrical Engineering and Computer Science

Univ. of California/Berkeley

 ii

Binary Lossless Layout Compression Algorithms and Architectures for
Direct-write Lithography Systems

by Vito Dai

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of California
at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

 Professor Avideh Zakhor

Research Advisor

Date

 Professor William Oldham

Second Reader

Date

 iii

ABSTRACT

Future lithography systems must produce more dense chips with smaller feature sizes, while maintaining throughput

comparable to today’s optical lithography systems. This places stringent data-handling requirements on the design of any

maskless lithography system. Today’s optical lithography systems transfer one layer of data from the mask to the entire wafer

in about sixty seconds. To achieve a similar throughput for a direct-write maskless lithography system with a pixel size of 25

nm, data rates of about 10 Tb/s are required. In this paper, we propose an architecture for delivering such a data rate to a

parallel array of writers. In arriving at this architecture, we conclude that pixel domain compression schemes are essential for

delivering these high data rates. To achieve the desired compression ratios, we explore a number of binary lossless

compression algorithms, and apply them to a variety of layers of typical circuits such as memory and control. The algorithms

explored include the Joint Bi-Level Image Processing Group (JBIG), and Ziv-Lempel (LZ77) as implemented by ZIP. In

addition, our own extension of Ziv-Lempel to two-dimensions (2D-LZ) is implemented and shown to outperform ZIP

compression for all layout data tested. For these layouts, at least one of the above schemes achieves a compression ratio of 20

or larger, demonstrating the feasibility of the proposed system architecture.

1. INTRODUCTION

Future lithography systems must produce more dense chips with smaller feature sizes, while maintaining throughput

comparable to today’s optical lithography systems. This places stringent data-handling requirements on the design of any

direct-write maskless system. Optical projection systems use a mask to project the entire chip pattern in one flash. An entire

wafer can then be written in a few hundred such flashes. In contrast, a direct-write maskless system must write each

individual pixel of the chip pattern directly onto the wafer. To achieve writing speeds comparable to today’s optical systems

requires a direct-write system capable of transferring trillions of pixels per second onto the wafer. Our goal in this paper is to

design a data processing system architecture, which is capable of meeting this enormous throughput requirement. In doing so,

we will demonstrate that lossless binary compression plays an important role.

To arrive at this system, we begin, in section 2, with detailed device specifications and the resulting system specifications.

Several designs are considered and discarded, based on memory, processing power, and throughput requirements. The final

design we arrive at consists of storage disks, a processor board, and circuitry fabricated on the same chip as the hardware

writers. To make this system design feasible, we estimate that a compression ratio of 25 is necessary to achieve the desired

data rates. In section 3, we explore existing lossless compression schemes: the context-based arithmetic coding scheme as

implemented by the Joint Bi-Level Image Processing Group (JBIG) 12, and the adaptive-dictionary based technique of Ziv

and Lempel (LZ77) 13 as implemented by popular compression packages (ZIP) 7. In addition, we devise and implement a

two-dimensional variant of the LZ77 algorithm (2D-LZ) in section 3, and test its compression performance against that of

JBIG and ZIP in section 4. Conclusions and directions for future research are included in section 5.

 2

2. SYSTEM ARCHITECTURE

Maskless direct-write lithography is a next-generation lithographic technique, targeted for the sub-50 nm device generations.

The left side of Table 1 presents relevant specifications for devices with a 50 nm minimum feature size. To meet these

requirements, the corresponding specifications for a direct-write pixel-based lithography system are shown on the right side

of Table 1. A minimum feature size of 50 nm requires the use of 25 nm pixels. Sub-nanometer edge placement can be

achieved using 5-bit gray pixels. A 10 mm × 20 mm chip then represents Tb
pixel

bits
nm
mm

nm
mm

6.1
5

25
20

25
10

≈×× of data per chip. A

300mm wafer containing 350 copies of the chip, results in 560 Tb of data per layer per wafer. Thus, to expose one layer of an

entire wafer in one minute requires a throughput of sTb
s
Tb

/4.9
60

560
≈ . These tera-pixel writing rates force the adoption of a

massively parallel writing strategy and system architecture. Moreover, physical limitations of the system place a severe

restriction on the processing power, memory size, and data bandwidth.

2.1 Writing strategy

As shown in Figure 1, one candidate for a maskless

lithography system uses a bank of 80,000 writers operating in

parallel at 24 MHz.11 These writers, stacked vertically in a

column, would be swept horizontally across the wafer, writing

a strip 2 mm in height. Although this results in a 60 second

throughput for one layer of a wafer, the problem of providing

data to this enormous array of writers still remains. In the

Device specifications Direct-write specifications
Minimum feature 50 nm Pixel size 25 nm
Edge placement < 1nm Pixel depth 5 bits / 32 gray
Chip size 10 mm × 20 mm Chip data (one layer) 1.6 Tb
Wafer size 300 mm Wafer data (one layer) 560 Tb
Writing time (one layer) 60 seconds Data rate 9.4 Tb/s

Table 1. Specifications for the devices with 50 nm minimum features

2mm stripe

Wafer

80,000 w
riters

Figure 1. Hardware writing strategy

 3

remainder of this paper, we address issues related to the design of the system that takes the chip layout stored on disks, and

brings it to the massive array of writers.

2.2 Data representation

An important issue intertwined with the overall system architecture is the appropriate choice of data representation at each

stage of the system. The chip layout delivered to the 80,000 writers must be in the form of pixels. Hierarchical formats, such

as those found in GDS-2 files, are compact as compared to the pixel representation. However, converting the hierarchal

format to the pixels needed by the writers requires processing power to first flatten the hierarchy into polygons, and then to

rasterize the polygons to pixels. An alternative is to use a less compact polygon representation, which would only require

processing power to rasterize polygons to pixels. Flattening and rasterization are computationally expensive tasks requiring

an enormous amount of processing and memory to perform. We will examine the use of all of these three representations in

our proposed system: pixel, polygon, and hierarchical.

2.3 Architecture designs

The simplest design, as shown in Figure 2, is to connect

the disks containing the layout directly to the writers.

Here, we are forced to use a pixel representation because

there is no processing available to rasterize polygons, or

to flatten and rasterize hierarchical data. Based on the specifications, as presented in Table 1, the disks would need to output

data at a rate of 9.4 Tb/s. Moreover, the bus that transfers this data to the on-chip hardware must also carry 9.4 Tb/s of data.

Clearly this design is infeasible because of the extremely high throughput requirements it places on storage disk technology.

Storage
Disk

On-chip Hardware

80,000 writers

9.4 Tb/s

Figure 2. Direct connection from disk to writers

Storage
Disk

On-chip Hardware

80,000 writers

1.6 Tb of memory

Memory

Figure 3. Storing a single layer of chip layout in on-chip memory

 4

The second design shown in Figure 3 attempts to solve the throughput problem by taking advantage of the fact that the chip

layout is replicated many times over the wafer. Rather than sending the entire wafer image in one minute, the disks only

output a single copy of the chip layout. This copy is stored in memory fabricated on the same substrate as the hardware

writers themselves, so as to provide data to the writers as they sweep across the wafer. Unfortunately, the entire chip image

for one layer represents about 1.6 Tb of data, while the highest density DRAM chip available, we estimate will only be 16 Gb

in size.2 This design is therefore infeasible because of the extremely large amount of memory that must be present on the

same die as the hardware writers.

It might appear to be possible to fit the chip layout in on-chip memory by either compressing the pixels, or using a compact

representation such as the hierarchical or polygon representations mentioned in section 2.1. This requires additional

processing circuitry to decompress the pixels, flatten the hierarchy or rasterize the polygons. In Figure 4, this processing

circuitry is called on-chip decode, and it shares die area with the on-chip memory and the writers. Even if all the on-chip area

is devoted to memory, the maximum memory size that can be realistically built on the same substrate as the writers is about

16 Gb, resulting in a required compaction/compression ratio of about 100
16

6.1
≈

Gb
Tb . However, this leaves no room for the

added decode circuitry to be fabricated on the same die as the writers, thus making this approach infeasible. If we reduce the

Storage
Disk

On-chip Hardware

80,000 writers

16 Gb of DRAM (compression ratio = 100)

Memory Decode

Figure 4. Storing a compressed layer of chip layout in on-chip memory

Storage
Disk

On-chip Hardware

80,000 writers

9.4 Tb/s uncompressed pixels

Memory Decode

Processor Board

Figure 5. Moving memory and decode off-chip to a processor board

 5

amount of memory to make room for the decode circuitry, we will need even higher compression ratios, resulting in more

complex, larger decode circuitry.

To solve this memory-processing bottleneck it is possible to move the memory and decode off-chip onto a processor board,

as shown in Figure 5. Now multiple memory chips can be available for storing chip layout data, and multiple processors can

be available for performing decompression, rasterization, and even flattening. However, after decoding data into the bitmap

pixel domain, we are again faced with a 9.4 Tb/s transfer of data from the processor board to the on-chip writers. We

anticipate chips to have at most around 1000 pins, which can operate at about 400 MHz, limiting the throughput to the writers

to at most 400 Gb/s. This represents about a factor of 25
/400
/4.9

≈
sGb
sTb difference, between the desired pixel data rate to the

writers and the actual rates possible.

To overcome this problem, we propose to move the decode circuitry back on-chip as shown in Figure 6. Analyzing the

system from the right to the left, it is possible to achieve the 9.4 Tb/s data transfer rate from the decoder to the writers

because they are connected with on-chip wiring, e.g. 80,000 wires operating at 25 MHz. The input to the decoder is limited to

400 Gb/s, limited by the amount of data that can go through the pins of a chip as mentioned previously. The data entering the

on-chip decode at 400 Gb/s must, therefore, be compressed by at least 25 to 1, for the decoder to output 9.4 Tb/s. Because

decoding circuitry is limited to the area of a single chip, it cannot perform complex operations such as flattening and

rasterization. Thus, to the left of the on-chip decode, the system uses a 25 to 1 compressed pixel representation in the bitmap

domain.

Given the 25 to 1 compressed pixel representation, the requirements for the rest of the system are relatively benign. As

before, only one copy of the chip needs to be stored in the memory on the processor board, which is replicated hundreds of

On-chip Hardware

Processor Board
64 GBit DRAM

400 Gb/s

Decode

25 to 1 single
compressed layer

Writers Storage Disks
640 GBit

9.4 Tb/s

25 to 1 all
compressed layers

1.1 Gb/s

Figure 6. System archtecture

 6

times as the wafer is written. In terms of uncompressed pixels, a chip layout represents about 1.6 Tb of information.

Compressed by a factor of 25, the entire chip layout becomes GbTb 64
25
6.1

≈ in size, and can be stored on multiple DRAM

chips on the processor board. These DRAM chips must output 400 Gb/s, which could be accomplished, for example, with

125 DRAM chips each 32-bits wide operating at 100 MHz. Each DRAM chip would only be 512 Mb large, to satisfy total

storage constraints. To supply data to the processor board, the storage disks need only output 64 Gb of compressed pixel data

every minute, resulting in a transfer rate of sGb
s

Gb /1.1
60

64
≈ . Moreover, they need to store compressed pixel data for all

layers of a chip, resulting in about 640 Gb of total storage for a 10-layer chip. These specifications are nearly within the

capabilities of RAID systems today5. Our next goal, then, is to find a compression scheme that can compress layout in the

pixel bitmap representation by a factor of 25.

 7

3. DATA COMPRESSION

To find a compression scheme that can achieve a compression ratio of 25, we begin by apply existing lossless image

compression techniques to rasterized chip layout. We have tested the performance of the context-based arithmetic coding

scheme as implemented by the Joint Bi-Level Image Processing Group (JBIG) 12, and the adaptive-dictionary based

technique of Ziv and Lempel (LZ77) 13 as implemented by popular compression packages (ZIP) 7. In addition, we have

devised and implemented a two-dimensional variant of the LZ77 algorithm (2D-LZ) and tested its compression performance

against that of JBIG and ZIP.

3.1 JBIG and ZIP Compression

JBIG is a recent standard for lossless compression of bi-level images,

developed jointly by the CCITT and ISO international standards

bodies.7 Optimized for compression of black and white images, JBIG

can also be applied to gray images of about six bits per pixel, or

sixty-four gray levels by encoding each bit plane separately, while maintaining compression efficiency. JBIG uses a ten-pixel

context to estimate the probability of the next pixel being white or black. It then encodes the next pixel with an arithmetic

coder based on that probability estimate. Assuming the probability estimate is reasonably accurate and heavily biased toward

one color, as illustrated in Figure 7, the arithmetic coder can reduce the data rate to far below one bit per pixel. The more

heavily biased toward one color, the more the rate can be reduced below one bit per pixel, and the greater the compression

ratio.

ZIP is an implementation of the LZ77 compression method

used in a variety of compression programs such as pkzip,

zip, gzip, and winzip.7 It is highly optimized in terms of

both speed and compression efficiency. The ZIP algorithm

treats the input as a stream of bytes, which in our case

represents a consecutive string of eight pixels in raster scan

order. To encode the next few bytes, it searches a window of

95% chance
of being zero

Figure 7. JBIG compression

o n t h e d i s k . t h e s e d i s k s

o n t h e d i s k . t h e s e d i s k s

o n t h e d i s k . t h e s e d i s k s

Figure 8. ZIP (LZ77) Compression

 8

up to 32 kilobytes of previously encoded characters to find the longest match to the next few bytes. If a long enough match is

found, the match position and length is recorded; otherwise, a literal byte is encoded. For example, in Figure 8, on the first

line, a match was found to “space,t,h,e” ten pixels back with a match length of four. On the second line, the only match

available is the “s” which is too short. Therefore, a literal is generated instead. Literals and match lengths are encoded

together using one Huffman code, and the match position is encoded using another Huffman code. Although the LZ77

algorithm was originally developed with text compression in mind, where recurring byte sequences represent recurring

words, applied to image compression it can compress recurring sequences of pixels. In general, longer matches and frequent

repetitions increase the compression ratio.

3.2 2D-LZ compression

We have extended the LZ77 algorithm to

two dimensions, thereby taking advantage of

the inherent two-dimensional nature of

layout data, for the system architecture

proposed in section 2. Pixels are still

encoded using raster scan order. However,

the linear search window, which appears in

LZ77, is replaced with a rectangular search region of previously coded pixels. As illustrated in Figure 9, a match is now a

rectangular region, specified with four coordinates: a pair of coordinates, x and y, specify the match position, and another pair

of integers, width and height, specify the match. If a match of minimum size cannot be found, then a literal is outputted

representing a vertical column of pixels. A sequence of control bits is also stored so the decoder can determine whether the

output is a literal or a match. To further compress the output, five Huffman codes are used: one for each of the match

coordinates x, y, width, height, and one for the literal. In order to find the largest match region, we exhaustively test each

pixel in the search region (x,y). When a match at a particular (x,y) is found, we increase width as much as possible, while still

ensuring a match; then we increase height as much as possible. This procedure guarantees the widest possible match size for

a given match position. We then choose the match position that results in the largest match size and store this as the match

region.

(x,y)

height

width

Match region

Not yet coded

Previously coded

Search region

Figure 9. 2D-LZ Matching

 9

In our current implementation the search

window is a 256×256 rectangular region

centered above the pixel to be compressed.

The bottom row of pixels of the search

region includes the pixel being compressed.

The match position is, therefore, specified in

sixteen bits. The size of search region is

chosen heuristically to achieve reasonable

compression times and efficiency. A smaller search area yields less compression, because some potential matches may not be

found. A larger search region dramatically increases the search time, which is proportional to the search region area. To

improve compression efficiency, we allow the match region to extend beyond the search region, as shown in Figure 10; only

the upper left hand corner of the match

region actually needs to be inside the search

region. Vertically and horizontally, the

match region can extend to include any

pixels that have been previously coded. By

allowing these large matches, we can encode

large repetitions in the layout data more

effectively.

Vertically, the match height is often limited because match regions quickly extend into not yet coded regions and cannot be

decoded, as shown in Figure 11. However, in the special case where the match position is directly above the pixel being

coded, we can let the match region extend vertically into not yet coded areas, as illustrated in Figure 12. In Figure 12A, the

gray area indicates the already encoded pixels, the white area indicates the pixels that are not coded yet, and the dotted

rectangle denotes the search region where the upper left hand corner of the match region must reside. In Figure 12B, a large

match, denoted by the rectangle, has been found positioned directly above the pixel to be encoded. Note that the match region

includes some pixels that are not yet coded, shown in light gray, which might be problematic when it comes time to decode.

Figure 12C depicts the set of not yet coded pixels that the match region is matching to. Because the match region overlaps the

(x,y)
Match region

Not yet coded

Previously coded

Search region

Figure 10. Extending the match region beyond the search region

Match region

Not yet coded

Previously coded

Search regionCannot
decode!

Figure 11. Cannot extend match region into not yet coded pixels

 10

region being matched to perfectly, it is possible to decode the light gray region completely first, as shown in Figure 12D,

resulting in Figure 12E. Now that all the pixels in the match region have been decoded, the rest of the decoding can continue

as normal as shown in Figure 12F. This same technique can be applied to extending a match horizontally into not yet coded

regions, when the match position is directly to the left of the pixel being encoded. Tall matches and wide matches such as

these expose large vertical repetitions and large horizontal repetitions, respectively, in the layout data. Vertically and

horizontally, the match height and match width are each limited to sixteen bits, or 65,536 pixels. Our simulations with

existing data indicate that matches taller or wider than this are uncommon, and can be encoded as two or more separate

matches at a small cost to compression efficiency.

 11

Figure 13 illustrates another interesting facet of the 2D-LZ algorithm. It is entirely possible for the region to be encoded to

cover previously coded pixels. Because

these pixels have been encoded already, we

do not check whether there is another match.

These “don’t care” pixels are always

considered a match for the purpose of

extending the match width and height, but

they are subtracted from the match size

Not yet coded pixels inside match region

Not yet coded pixels

Previously coded pixels inside the match region Search region

Previously coded pixels

A B

D

C

E F

Match position

Pixel being
encoded

Figure 12. Extending the match region into not yet coded pixels

Match region

Not yet coded

Previously coded

Search region

Figure 13. Holes in the rectangular match region

 12

when choosing the position that gives the largest match size. During decoding, the decoder also knows which pixels have

been decoded previously, and will also ignore these “don’t care” pixels.

The decoding of 2D-LZ is simple. First the match region x, y, width, and height, and the literals are Huffman decoded.

Similar to the encoder, the decoder also keeps a buffer of previously decoded pixels. The size of this buffer must be large

enough to contain the height of the search window and the width of the image for matching purposes. Each time a match is

read, the decoder simply copies data from the corresponding match region among the previously decoded pixels and fills it in

the not yet decoded area. “Don’t care” pixels, that is, pixels that have been previously decoded but appear in the match

region, are discarded. If a literal is read, the decoder simply fills in a vertical column of pixels in the not yet coded area. The

decoder does not need to perform any searches, and is therefore much simpler in design and implementation than the encoder.

 13

4. COMPRESSION RESULTS

The results of our compression experiments for various layers of several layout types such as memory, control, and mixed

logic are listed in Table 2. Memory cells tend to be dense and are composed of small, regularly repeated cells. Control logic

is very irregular and somewhat less dense. Mixed logic comes from a section of a chip that contains both some memory cells

and some glue logic intermingled with the cells. Compression ratios listed in bold in Table 2 are below the required

compression ratio of 25, as suggested by the architecture presented in section 2.

Examining the third column of Table 2 reveals that JBIG

performs well for compressing relatively sparse layout as in

the control logic, mixed areas, and metal 2 layers. However,

its performance suffers greatly in dense layout such as those

found in memory cells. Even though the memory cells are

very repetitive, JBIG’s limited ten-pixel context is not enough

to model this repetition of cells. Theoretically we could

increase the context size of the JBIG algorithm until it covers

an entire cell. In practice, however, because the number of possible contexts increases exponentially with the number of

context pixels, it is infeasible to use more than a few tens of pixels, whereas cells easily span hundreds of pixels.

In contrast to JBIG, ZIP’s compression ratios in column four suggest that it is well suited to compressing dense repetitive

layout data, exhibiting compression ratios of 50 or higher. Repetitive layout allows the ZIP algorithm to find plenty of long

matches, which translates into large compression ratios. On the other hand, ZIP performs poorly on irregular layouts found in

control and mixed logic. For these layouts, ZIP cannot find long matches, and frequently outputs literals, resulting in

performance loss in these areas.

2D-LZ, as shown in the fifth column of Table 2, performs similarly to ZIP having been grounded in the same basic LZ77

scheme. It compresses dense repetitive layout well, exhibiting compression ratios of 80 or higher. For irregular layout found

in control and mixed logic, 2D-LZ exhibits a performance loss as compared to JBIG. Interestingly, 2D-LZ surpasses the

performance of the basic ZIP algorithm for all types of layout by taking advantage of the inherent two-dimensional nature of

Type Layer JBIG ZIP 2D-LZ
Metal 2 58.7 88.0 233
Metal 1 9.77 47.9 79.1

Memory
Cells

Poly 12.4 50.7 120
Metal 2 47.0 22.1 25.5
Metal 1 20.0 10.9 11.2

Control
Logic

Poly 41.6 18.9 20.4
Metal 2 51.3 28.3 34.4
Metal 1 21.2 11.9 12.6

Mixed

Poly 41.3 22.9 27.2
Large
Area

Metal 1 35.5 26.3 43.8

Table 2. Compression ratios of JBIG, ZIP and 2D-LZ

 14

layout data. For memory cells in particular, 2D-LZ compresses twice as well as ZIP. Memory cells are regularly arrayed both

vertically and horizontally, and 2D-LZ takes full advantage of this two-dimensional repetition.

Examining the rows of Table 2, it is evident that while no single compression scheme has compression rations larger than 25

for all layouts, there exists at least one compression scheme with a ratio larger than 25 for most layouts. Thus, in most cases,

we can achieve 25 to 1 compression by applying different compression schemes to different types of layout. Even for the

rows where this fails, i.e. metal 1 control logic and metal 1 mixed layouts, JBIG still achieves a compression ratio of 20,

which is very close to the desired compression ratio of 25. From an architectural point of view, the drawback of using

different schemes for different layouts is that all the decoders, for all compression algorithms used, must be implemented in

hardware, making it more difficult to fit the decoding circuitry on the same substrate as the writers. Alternatively different

layers can be written with different writers, each writer implementing the single best compression technique for that layer.

Finally, to accommodate the large variation of compression ratios for different layouts, it is possible to write the layers at

different speeds.

4.1 Dependency of compression ratio on region size

Compression ratios in the first nine rows of Table 2 are based on a 2048-pixel wide and 2048-pixel tall section of a chip. This

height of the compressed section, 2048, is chosen to have approximately the same chip coverage experienced by the 80,000

writers. As described in section 2.1, 80,000 writers write a 2 mm stripe across the wafer, which, for a 10mm tall chip, is one-

fifth of the chip’s height. Since the layout data we test is from a chip only 12,000 pixels tall, the height of the section we

compress, 2048, is approximately a fifth of our chip’s height.

The width of the section compressed, 2048, is chosen more arbitrarily. All of the algorithms presented are adaptive, and need

to process a small amount of setup data before reaching their peak compression efficiency. An effort was made so that there

would be enough data to overcome initial adaptation overhead of the three compression algorithms. On the other hand, the

system architecture presented at the end section 2 requires achieving a consistent compression ratio of 25 to 1 across different

regions of a given layer of a chip. On a typical processor chip, for example, a horizontal strip across the chip may encounter

several different types of circuits, including arrayed memory cells, control logic, wiring areas, and glue logic. The

compression algorithm must maintain a 25 to 1 compression as the writers pass over each of these sections, or else on chip

 15

buffers are needed to smooth out variations in compression ratio from one region to another. Although not rigorously tested,

we have found a section width of 2048 to be large enough to absorb the adaptation overhead, while small enough to achieve

consistent compression performance for relatively small buffer sizes. Further investigation is needed to understand the

precise relationship between section width, buffer size, compression ratio variations, and adaptation overhead.

One interesting result to note is the last row of Table 2. The large area metal 1 layout compressed here is an 8,192-pixel wide

and 8,192-pixel tall section of a chip that is 10,000 pixels wide and 12,000 pixels tall. As such, it covers a large percentage of

the chip including a large portion of memory cells, a small portion of control, and a portion of the pad area. The compression

ratio here is representative of the average compression that can be achieved with each of the three schemes if there are no

striping and buffer constraints as mentioned earlier. Here the performance of 2D-LZ stands out above that of JBIG and ZIP.

2D-LZ compresses memory cells much better than JBIG, and these cells occupy the majority of this chip layout. In addition,

the two-dimensional nature of the 2D-LZ algorithm allows it to better exploit the two-dimensional correlations found in

layout than ZIP can. Issues related to optimum buffer size and section size are wide open for future studies.

4.2 Decode complexity

A key consideration for the architecture proposed in section 2.3 is the decoding complexity of the three compression

algorithms. JBIG decoders must maintain information about each of the 1024 contexts and update context probabilities in the

same way as the encoder, and they must perform additions, bit-shifts, and comparisons to decode an the arithmetic code.

Moreover, these operations must be performed for every bit. In contrast, both ZIP and 2D-LZ require mostly memory

copying to fill in match information. To perform Huffman decoding, an adder, comparator, and single-bit shifter is necessary.

However, these operations are only performed for every match block, rather than every bit. One drawback of the ZIP and 2D-

LZ is that a large buffer of previously decoded pixels must be maintained for the purpose of decoding matches. While we

have not performed extensive decode complexity tests and simulations, it might be worthwhile to report decoding times for

JBIG, and ZIP. On a 600 MHz Intel Pentium III PC, running Windows NT 4.0, decoding a typical 2048×2048 region for

JBIG requires about 3 seconds. On the same computer, the decoding of ZIP takes less than a second. 2D-LZ code has not yet

been optimized for speed, and as such, we cannot currently report on its speed performance.

 16

5. SUMMARY, CONCLUSIONS AND FUTURE WORK

We have proposed a data processing system architecture for next generation direct-write lithography, consisting of storage

disks, a processor board, and decode circuitry fabricated on the same chip as the hardware writers, as shown in Figure 6. In

our design, the pattern of an entire chip, compressed off-line, is stored on disk. These disks provide large permanent storage,

but only low data throughput to the processor board. When the chip pattern needs to be written to wafer, only a single

compressed layer is transferred to the processor board and stored there in DRAM memory. As the writers write a stripe

across the wafer, the processor board provides, in real-time, the necessary compressed data to on-chip hardware. In turn, the

on-chip hardware decodes this data in real-time, and provides uncompressed pixel data to drive the writers. The critical

bottleneck of this design lies in the transfer of data from the processor board to the on-chip hardware, which is limited in

throughput to 400 Gb/s by the number of pins on the chip, e.g. 1,000 pins operating at 400 MHz. Another critical bottleneck

is the real-time decode that must be done on-chip, which precludes such complex operations as rasterization. Considering that

the writers require about ten terabits per second of data, and the processor board can deliver at most 400 Gb/s to the on-chip

hardware, we estimate that a compression ratio of 25 is necessary to achieve the data rates desired.

To achieve this compression ratio, we have studied three compression algorithms and applied them to the problem of lossless

layout compression for maskless lithography. JBIG, a compression standard developed for bi-level images, performs well for

non-dense layout. However for dense, regularly arrayed memory cells, its performance is hampered by the limited ten-pixel

context, which is not sufficient to model the repetition of large thousand pixel cells. On the other hand, ZIP, based on LZ77,

takes full advantage of repetitions to compress memory cells, but performs poorly in non-regular layout. Our 2D-LZ

improves on the basic LZ77 technique, by extending matching to two-dimensions. Several refinements of the basic 2D-LZ

technique are implemented to improve compression performance. For all layouts tested, 2D-LZ achieves better compression

ratios than the one-dimensional LZ77 scheme used in ZIP. In all cases tested, at least one of the three compression schemes

achieves a compression ratio of at least 20. In most cases, at least one scheme achieves a compression ratio greater than 25,

demonstrating the feasibility of the proposed system architecture.

Nonetheless, the challenge remains to develop a single compression technique that can consistently achieve a compression

ratio of 25 and higher, with as simple as possible decode complexity. Currently, we are investigating improvements to the

2D-LZ algorithm that can further improve its compression efficiency, and we are extending 2D-LZ to compress layouts with

 17

gray-pixels. In the future, we plan to investigate implementation issues related to decoder of each of the schemes presented.

We also plan to explore representations that are more compact than the pixel bitmap representation, yet easily rasterizable so

that the rasterization circuitry may fit in limited on-chip decode circuitry. Ultimately our goal is to understand the

fundamental limits of compressing layout, and to analyze the tradeoff between compression efficiency and decode

complexity.

 18

ACKNOWLEDGEMENT

This work was conducted under the Research Network for Advanced Lithography, supported jointly by the Semiconductor

Research Corporation and the Defense Advanced Research Project Agency.

Foremost, I would like to thank my advisor, Professor Avideh Zakhor for her continued guidance, insight, and

encouragement. The ideas and results presented in this work are as much her vision as it is mine. Thank you Professor

William Oldham for reviewing this work, and for providing us with your understanding of Next-Generation Lithography

technologies. Special thanks to Uli Hofmann and Teri Stivers of Etec Systems, Inc. for helping us understand the complexity

issues associated with bringing layout data to an array of mask writers.

My most sincere gratitude goes out to all my friends and family. Without their continued support, motivation, and advice, I

would not be where I am today. Thank you especially Thinh Nguyen, for gifting me with your wisdom concerning school,

work, and research. Thank you Samsun Cheung, Daniel Tan, and Nelson Chang for sharing your experiences as graduate

students with me. To my old friends, Jimmy Lin, Jeff Chang, Frank Ma, and Brian Limketkai, these past two years at

Berkeley could not have been weathered without your continued friendship, and I treasure it greatly. Mary, you have always

been a dear friend, and I cherish your love. Dad, thank you for supporting me all these years. Mom, thank you for being my

friend, my teacher, my counselor and most of all, my mother. I dedicate this work to you, with all my love.

 19

REFERENCES

1. M. Gesley, “Mask patterning challenges for device fabrication below 100 nm”, Microelectronic Engineering 41/42, pp.

7-14, 1998.

2. The National Technology Roadmap for Semiconductors, 1997 Edition, Semiconductor Industry Association, San Jose,

CA, 1997.

3. K. Keeton, R. Arpaci-Dusseau, D. A. Patterson, “IRAM and SmartSIMM: Overcoming the I/O Bus Bottleneck”,

Workshop on Mixing Logic and DRAM: Chips that Compute and Remember, International Symposium on Computer

Architecture, 1997.

4. E. H. Laine, P. M. O’Leary, “IBM Chip Packaging Roadmap”, International Packaging Strategy Symposium,

SEMICON West, 1999.

5. “IBM fibre channel RAID storage server”, IBM Corporation, 1999.

6. K. Sayood, Introduction to Data Compression, pp. 87-93, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996

7. A. Moffat, T. C. Bell, I. H. Witten, “Lossless compression for text and images”, International Journal of High Speed

Electronics and Systems 8 (1), pp. 179-231, 1997.

8. E. I. Ageenko, P. Franti, “Enhanced JBIG-based compression for satisfying objectives of engineering document

management system”, Optical Engineering 37 (5), pp. 1530-1538, SPIE, 1998.

9. R. Veltman, L. Ashida, “Geometrical library recognition for mask data compression”, Proceedings of the SPIE – The

International Society of Optical Engineering 2793, pp.418-426, SPIE, 1996.

10. H. Yuanfu, W. Xunsen, “The methods of improving the compression ratio of LZ77 family data compression algorithms”,

1996 3rd International Conference on Signal Processing Proceedings, pp. 698-701, IEEE, New York, 1996.

11. N. Chokshi, Y. Shroff, W. G. Oldham, et al., “Maskless EUV Lithography”, Int. Conf. Electron, Ion, and Photon Beam

Technology and Nanofabrication, Macro Island, FL, June 1999.

 20

12. CCITT, ITU-T Rec. T.82 & ISO/IEC 11544:1993, Information Technology – Coded Representation of Picture and

Audio Information – Progress Bi-Level Image Compression, 1993.

13. J. Ziv, A. Lempel, “A universal algorithm for sequential data compression”, IEEE Trans. On Information Theory IT-30

(2), pp. 306-315, IEEE, 1984.

