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ABSTRACT 

We present an automatic system for planar 3D modeling of build-

ing interiors from point cloud data generated by range scanners. 

This is motivated by the observation that most building interiors 

may be modeled as a collection of planes representing ceilings, 

floors, walls and staircases. Our proposed system, which employs 

model-fitting and RANSAC, is capable of detecting large-scale ar-

chitectural structures, such as ceiling and floors, as well as small-

scale architectural structures, such as staircases. We experimentally 

validate our system on a number of challenging point clouds of real 

architectural scenes. 

Index Terms— 3D indoor modeling, range scanners, point cloud, 

RANSAC, PCA, model fitting 

1. INTRODUCTION 

Three-dimensional (3D) modeling of architectural scenes from 

point cloud data generated by range scanners is an increasingly im-

portant research area with applications such as virtual and aug-

mented reality, navigation, and virtual heritage conservation. 

While user-assisted methods have been proven effective, automatic 

methods for 3D interior modeling have received much interest in 

recent years. In this context, methods capable of modeling building 

interiors in terms of planar primitives are gaining popularity. 

In contrast to building exteriors, the modeling of interiors poses 

two important challenges. First, a complexity challenge, as build-

ing interiors may contain several interconnected rooms and hall-

ways. Second, a scalability challenge, given the prevalence of 

small-scale structures, such as walls and staircases, relative to the 

scale of the scene. 

A number of methods for automatic planar 3D modeling of 

building interiors from point cloud data have been recently re-

ported in the literature [1-2]. Although the method in [1] deals effi-

ciently with architectural scenes comprising planar faces, it only 

produces a 3D model describing the exterior geometry of the build-

ing. In [2], the authors propose a method to model an architectural 

scene as a collection of cuboids, i.e., planar facets. The proposed 

method is robust to noisy and sparse data; however, it is restricted 

to modeling cuboids if at least five facets are detected as planes. 

Consequently, architectural structures with a limited number of 

facets, such as staircases, cannot be modeled. 

 This paper presents an automatic system for planar 3D model-

ing of building interiors from point cloud data by using a set of pla- 

nar primitives. It is based on the observation that building interiors 

often feature highly structured floor plans comprising a strong pla-

nar arrangement. Therefore, building interiors may be modeled as a 

set of planar primitives representing four basic architectural struc-

tures: ceilings, floors, walls and staircases. 

Our approach can be summarized as follows. First, we perform 

point-wise principal component analysis (PCA) on a point cloud 

representing a building interior. This is followed by a classification 

and segmentation process to identify and segment regions repre-

senting basic architectural structures. We then employ model-fit-

ting on the segmented regions to detect ceilings, floors, walls, and 

staircases. We then generate a 3D model by assembling the de-

tected architectural structures.  

The rest of the paper is organized as follows. Section 2 de-

scribes in more detail the pipeline of our system. Section 3 presents 

and discusses the experimental results. Section 4 provides the 

concluding remarks. 

2. PIPELINE OF THE PROPOSED SYSTEM 

Our planar 3D modeling system comprises three steps, as shown in 

Fig. 1.  The next sections describe, in more detail, these steps. 

2.1. Principal Component Analysis 

The input to a our system is a point cloud represented by the set    

P = {pi, i ∈ {1,…,N}} in �3. We assume the point cloud data is 

generated by a mobile 3D acquisition system comprising a number 

of 2D range scanners, which are used for both localization and 

geometry capture [3-4]. Let ci denote the 3D position of the range 

scanner for pi. Note that ci may be different for every input sample, 

as the acquisition system traverses the building interior. 

We first perform a first-order approximation of the input data 
by estimating the normal vectors of the set P. For each input point 
pi of P, we perform PCA on the ball neighborhood of radius σ cen-
tered on pi, as shown in Fig. 2. PCA results in a set of eigenvalues, 
λmax, λmid, λmin, which encode the size and shape of the best fit el-
lipsoid over the ball neighborhood, and a set of eigenvectors, emax, 
emid, emin, which provide information about the principal directions 
of the fit ellipsoid. The eigenvector associated with the smallest ei-
genvalue constitutes an estimate of the normal vector, ni, to the sur-
face of the ball neighborhood centered on pi. We assign ni a con-
sistent orientation by making sure that ci is on its positive side, as 
shown in Fig. 2.  

Fig. 1. Proposed planar 3D reconstruction system. 

 
Fig. 2. Ball neighborhood of radius σ centered on point pi. 
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2.2. Classification and segmentation  

Based on the results of PCA, we divide the input points into five 

disjoints subsets: ceiling points, floor points, wallsX points, wallsY 

points, and remaining points. Subset wallsX contains all the points 

whose normal vector ni has a maximum component along the x-

axis, whereas subset wallsY contains all the points whose normal 

vector ni has a maximum component along the y-axis. Let θ(a,b) 

denote the minimum 3D angular distance between vectors a and b. 

Let us assume that points representing ceilings and floors lie on 

planes that are parallel to the x-y plane, and points representing 

walls lie on planes that are perpendicular to the x-y plane. Based on 

these assumptions, each input point pi is classified into a single 

subset as follows: 

  

p i ∈

ceiling         if  θ n i ,(0,0,−1)( )<15 deg.

floor            if  θ n i ,(0,0,1)( )<15 deg.

wallsX         if  θ n i ,(0,0,±1)( )< 45 deg.

wallsY         if  θ n i ,(0,0,±1)( )< 45 deg.

remaining   otherwise
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After dividing the input points into disjoints subsets, we grow a 

region through any pair of points in the same subset that are within 

an Euclidian distance deucl. We discard regions that contain fewer 

points than a threshold Np, as they usually represent noisy regions. 

Note that deucl and Np are user-specified parameters. Finally, we 

segment each found region from the disjoint subsets. Figure 3 

shows the classification and segmentation of wallsX points of point 

cloud data representing a T-shaped hallway.  

2.3. Model fitting  

After classification and segmentation, we fit a model to each seg-

mented region. For regions segmented from the subsets ceiling, 

floor, wallsX and wallsY, we fit a planar model, which may result 

in a single planar primitive representing an architectural structure. 

For regions segmented from the subset remaining, we search for 

and possibly fit a staircase model, which may result in a set of 

planar primitives representing treads and risers of steps. The latter 

is based on the assumption that any staircase structure, if present in 

the data, should be contained in the subset remaining. 

2.3.1. Planar model 

We employ random sample consensus (RANSAC) to find the best 

fitted planar primitive in the least-square sense [5]. RANSAC ran-

domly draws a set of three different points from the segmented re-

gion and computes a candidate planar primitive. A planar primitive 

consists of an oriented 3D plane and a set of inliers, which repre-

sent its spatial extent. A point pi is an inlier of a planar primitive T 

if and only if the squared distance from pi to T is less than a thresh-

old q. The resulting candidate planar primitive is tested against all 

points of the segmented region to determine the number of inliers. 

After a given number of trials, the candidate planar primitive with 

the most inliers is selected and its spatial extent is computed.  

It is expected that the spatial extent of most planar primitives 

describing walls may be approximated by four vertices, since walls 

are generally rectangular in shape. However, some walls are 

polygonal in shape and may require more than four vertices to 

approximate its spatial extent. Similarly, the spatial extent of most 

planar primitives describing ceilings and floors may require more 

than four vertices to be properly approximated, since these 

architectural structures are generally polygonal in shape.  

 In order to determine the spatial extent of walls, ceilings and 

floors, we first project all inliers on the corresponding oriented 3D 

plane. We then employ alpha-shapes to compute the vertices of the 

concave hull of the set of projected inliers [6]. Finally, we employ 

the split-and-merge algorithm to eliminate any redundant vertices, 

and determine the final vertices that approximate the spatial extent 

[7]. Fig. 4 shows the process to determine the spatial extent of a 

sample polygonal wall. 

2.3.2. Staircase model 

Our staircase model comprises six parameters as illustrated in Fig. 

5. These six parameters are used to represent each step by a set of 

two planar primitives, corresponding to the tread and the riser. The 

spatial extent of each planar primitive is approximated by four 

vertices, since treads and risers are generally rectangular in shape. 

The staircase model-fitting approach consists of two steps. The 

first step is a coarse search for valid staircase ramps, to limit the 

complexity of the second step, which further tests for the existence 

of steps. In the first step, we employ RANSAC to determine if a 

segmented region is a valid staircase ramp. A segmented region is 

a valid staircase ramp if it is possible to fit a planar primitive with 

(a) (b)  

(c) 

Fig. 3. Classification and segmentation of wallsX points of point cloud data representing a T-shaped hallway. (a) Original point cloud. (b) Subset wallsX

after PCA and classification. (c) Segmented region representing a wall. 

 
(a) 

 
(b) 

Fig. 4. Sample polygonal wall. (a) Projected inliers on the oriented 3D 

plane. Dotted red line denotes the concave hull calculated by alpha-shapes. 

(b) Final spatial extent after split-and-merge. 



an inclination between 25 deg. and 50 deg. with respect to the x-y 

plane, and with a spatial extent with a minimum width wmin = 0.5 

m. and a minimum length lmin = 0.5 m. We determine the spatial 

extent of the planar primitive by projecting all inliers to the corre-

sponding 3D oriented plane and finding the smallest bounding rec-

tangle containing all projected inliers. Note that the values of wmin, 

lmin, and the inclination range of the fitted planar primitive repre-

sent the width, length and inclination of typical staircase ramps.  

In the second step, we fit our staircase model to the segmented 

region only if a valid staircase ramp is detected in the first step. We 

use the smallest bounding rectangle containing all projected inliers, 

to determine the reference point, azimuth and step width, as shown 

in Fig. 6. The width of the bounding rectangle corresponds to the 

step width, while one of its vertices serves as the reference point. 

We project the bounding rectangle onto the x-y plane to determine 

the azimuth by calculating its orientation with respect to the x-axis.  

In order to determine the tread depth, riser height and number 

of steps, we assume that the mobile acquisition system has a 2D 

pitch scanner capable of scanning the x-z or y-z plane, depending 

on whether the scanning path is on the x or y direction [3]. Using 

the pitch scanner data corresponding to the detected staircase ramp, 

we determine the beginning and end points of each riser and tread 

by fitting a model comprising two perpendicular lines, as shown in 

Fig. 7. The average Euclidean distance between the beginning and 

end points of all detected risers corresponds to the riser height, 

while the average Euclidian distance between the beginning and 

end points of all detected treads corresponds to the tread depth. 

The total number of steps is set to the total number of detected 

pairs of treads and risers. Fig. 8 shows a section of a sample 

remaining-subset with two valid staircase ramps and the 

corresponding fitted models. 

3. EXPERIMENTAL RESULTS 

Our system employs C++ libraries publicly available in the Point 

Cloud Library (PCL) [8]. We have tested our approach on three 

datasets, D1, D2, and D3, that capture 3D geometry of the interior 

of the building hosting the Department of Electrical Engineering 

and Computer Sciences, University of California, Berkeley. Data-

set D1 represents a T-shaped hallway, D2 three hallways connect-

ed by two staircases, and D3 a complex floor plan with intercon-

nected rooms and hallways. We preprocess the point cloud data by 

applying voxel-grid filtering in order to reduce the noise. This fil-

tering procedure divides the input data into voxels and approxi-

mates all the points within each voxel with their centroid. Table 1 

lists the system parameter values and the statistics on the processed 

datasets, including processing times on a 2.13 Ghz Intel Xeon PC. 

The majority of processing time is devoted to point-wise PCA, 

which has a complexity of O(N(logN)), where N is the number of 

points in the point cloud. Since dataset D1 is sparser than D2 and 

D3, for D1 we employ a larger deucl value and a lower Np value 

during region growing. In all datasets, we discard any planar 

primitives with an area less than 0.5 m2, as they usually represent 

noisy regions. 

The final planar 3D models are shown in Fig. 9. Note that, in 

some places, the point cloud data are sparse and fairly noisy. Nev-

ertheless, our system successfully generates simple models while 

discovering both, small-scale architectural structures, such as walls 

and staircases, and large-scale architectural structures, such as ceil-

ings and floors. It is important to mention that, in the majority of 

the cases, a single planar primitive represents each detected wall, 

 

Fig. 5. The six parameters of the staircase model. 

 

Fig. 6. Reference point, azimuth and step width of the staircase model. 

 

Fig. 7. Pitch scanner data of a sample staircase. Red dots represent the 

beginning and end points of risers and treads detected after model fitting. 

(a) (b) 

Fig. 8. Section of (a) a sample remaining-subset comprising two valid 

staircase ramps and (b) the corresponding fitted models. 

Table 1. System parameters and statistics on processed datasets 

Dataset Points σ q deucl  Np Detected planes Time 

D1 546,563 0.05m 0.05m 0.15m 500 15 14.6 min 

D2 4,683,693 0.05m 0.05m 0.10m 1000 201 145.4 min 

D3 6,747,661 0.05m 0.05m 0.10m 1000 93 213.3 min  

σ: PCA radius.  q: threshold for RANSAC. deucl: Euclidian distance for 

region growing. Np: minimum number of points per region.  
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ceiling and floor. Note in Fig. 9(j) the benefits of using alpha-

shapes and split-and-merge to approximate the spatial extent of 

polygonal walls, in this case, a wall with an open door. 

4. CONCLUSIONS 

We have presented an automatic system for planar 3D modeling of 

building interiors from point cloud data produced by range scan-

ners. The system is capable of generating simple models in terms 

of a set of planar primitives. We have demonstrated the benefits of 

our system on challenging point clouds representing building inte-

riors with various staircases, interconnected rooms and hallways. 

Future work involves modeling non-planar walls with curvature. 
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Fig. 9. Planar 3D models of datasets. (a)-(c) Input point cloud data. (d) View of dataset D3 with ceilings and floors removed to facilitate visualization of 

interconnected rooms and hallways. (e)-(m) Different views of the corresponding planar 3D models. 


