
Approximate Subgraph Isomorphism for Image Localization

Vaishaal Shankar, Jordan Zhang, Jerry Chen, Christopher Dinh, Mattthew Clements, and Avideh Zakhor
University of California, Berkeley

Berkeley, CA 94720
{vaishaal,jordan.of.zhang, jc9100,chris.d,clements,avz}@berkeley.edu

Abstract

We propose a system for user-aided image localization in
urban regions by exploiting the inherent graph like structure
of urban streets, buildings and intersections. In this graph
the nodes represent buildings, intersections and roads. The
edges represent “logical links” such as two buildings being
next to each other, or a building being on a road. We gener-
ate this graph automatically for large areas using publicly
available road and building footprint data. To localize a
query image, a user generates a similar graph manually by
identifying the buildings, intersections and roads in the im-
age. We then run a subgraph isomorphism algorithm to find
candidate locations for the the query image. We evaluate
our system on regions of multiple sizes ranging from 2km2

to 47km2 in the Amman,Jordan and Berkeley,CA,USA. We
have found that in many cases we reduce the uncertainty in
the query’s location by as much as 90 percent.

1. Introduction
Image geo-localization, particularly in urban settings, is

an important subject with applications in augmented reality,
navigation, and surveillance. The ultimate goal of image
geo-localization is to assign a latitude and longitude to an
image. The most straightforward way to accomplish this
is to use digital GPS and compass modules integrated into
imaging devices to record pinpoint geographical data at the
moment an image is taken. However, many useful images
are not geo-localized at the instant they are taken, or are
erroneously geo-localized. Multipath effects in cities with
tall buildings is well-studied phenomenon known to have a
large impact on GPS accuracy in urban regions.

Many approaches to image geo-localization focus on re-
ducing the set of possible candidate locations for the image.
[19] and [1] have had success with localization for desert
or mountain images, by matching skylines to a database of
model skylines computed from a digital elevation map. In
some cases the area of interest is reduced by as much as
99%. Ramalingam et. al. in [15] apply a similar method on

urban skylines to address the inaccuracy of GPS in urban
canyons, but their method requires images taken directly
upward that encompass a full 360◦ spherical dome above
the camera location, a condition that few street level images
meet.

Much previous work in high precision urban localiza-
tion relies on distinctive landmarks and on matching image
features, such as SIFT, with a database of similar features
gathered from sources such as Google Street View [16].
Methods such as [9], [11] and [8] use large geotagged im-
age databases to solve this problem on a global scale. If a
readily available source such Street View has low coverage
in an area of interest, then a working database for feature
matching methods is nearly impossible to generate. In a
proof of feasibility, Bansal et. al. [2] claim that overhead
imagery is essential to overcoming the sparse coverage of
ground image databases by demonstrating a rough facade
matcher for oblique satellite images. Even if image match-
ing localization methods succeed, they result in large can-
didate areas, often the size of a city or country. The authors
of [7], for example, forgo pinpoint localization entirely and
only determine whether a picture is from Prague or Paris.
Furthermore image features such as SIFT, while effective
for general image retrieval and identification, fail to capture
important spatial features for image localization.

In this paper, we exploit the inherent structure of ur-
ban environments, the fact the buildings are constructed in
an orderly fashion along streets with geometrically regu-
lar intersections to localize images. Identifying the exis-
tence and type of the roads, intersections and buildings in
the image can provide rich, invaluable information to aid
localization. There are readily available sources, such as
Open Street Map (OSM), for road and building footprint
data world wide. Numerous satellite based building detec-
tion algorithms and road detection algorithms such as [14]
can be used to generate road and building footprint data.
We take advantage of the orderly layout of cities to gener-
ate a database graph representing the roads and buildings
in an area of interest. To localize an image, a human user
constructs a similar graph by identifying all buildings, in-

1

tersections, and roads in a query image. Our system then
takes in these two graphs and runs a custom made sub-
graph isomorphism algorithm inspired by [12] to find can-
didate subgraphs in the georeferenced database graph. Our
graph matching algorithm prunes candidate subgraphs us-
ing shadow analysis, [4], and geometric consistency tech-
niques. The candidate subgraphs are georeferenced so the
location of the nodes in subgraphs corresponds to potential
locations for the query graph.

This paper is organized as follows: Section 2 reviews
related work in graph matching. In Section 3 we describe
the semantics of the graph, and design decisions in choos-
ing this particular graph model. In Section 4 we discuss our
graph generation method for the area of interest and query
image. We then outline the details of our graph matching
algorithm in Section 5. In Section 6 we detail our exper-
imental results. Finally in Section 7 we conclude with a
summary of our contributions and future work.

2. Related Work
The main component of the proposed image geo-

localization method is computing the graph matches, also
commonly known as graph isomorphisms or homomor-
phisms [5]. Section 2.2 of [3] and Sections 1 and 2 of [5]
provide overviews of the commonly studied forms of graph
matching. Of the graph-based image geo-localization pa-
pers in the literature, many use graphs as a tool to assist fea-
ture matching to a ground level database. For example, [21]
uses a minimum clique algorithm to match pruned SIFT fea-
tures from a ground level database.

Among the various graph matching problems, inexact
attributed subgraph matching holds the most relevance.
In this formulation, we are given two graphs (V,E) and
(V ′, E′) such that |V | ≥ |V ′|, and the goal is to find a map-
ping f : V ′ → V such that (V ′, E′) is isomorphic to a sub-
graph of (V,E). Since both the building and road databases
and the user-generated query input are error-prone, our sub-
graph isomorphism algorithm must be robust to uncertain-
ties in both the database and query graphs. Furthermore,
our graphs use attributes, metadata on the nodes and edges
themselves, to facilitate the match. Finally, to accommodate
large regions of interest in which a particular query image
might have been captured, the graph matcher must scale to
large data sets.

The bulk of subgraph matching literature is con-
cerned with subgraph matching in which neither query nor
database graphs have noise[6, 17, 20]. Many error-tolerant
graph matchers such as [13], [10], [22] are designed to com-
pute similarity metrics on the entirety of small graphs rather
than finding a small piece of a large graph that matches
a query graph, and are not suitable for our purpose. The
matcher proposed in [18] scales well, handles attributes on
the graphs, and returns best-effort matches in the presence

of errors in the graph. However, its robustness to com-
mon errors in our geolocalization problem, such as misla-
beled building colors or heights, spurious edges, and omit-
ted buildings as a result of occlusion in the query image,
is limited. The algorithm proposed by [12], tolerates ex-
cessive errror on the database side by treating the entire
database graph as Markov random field, and attempts to
find high probability matches. This algorithm scales well
and finds accurate matches on large graphs but it is not tol-
erant of errors on the query graph.

3. Graph Representation
As seen in Figure 1b The nodes in our graph represent

real world entities that are easily recognizable from a query
image by humans: buildings, intersections, and streets. The
edges in our graph represent “logical links” that exist be-
tween these real world entities, and are easily recognizable
from the query image by a human. An edge between two
buildings denotes that the two buildings are adjacent, while
an edge between a building and a road means that the build-
ing sits on that road. In our graph, the parity of relationships
between building and intersections is preserved. For local-
ization to work properly, these edges must be easy to infer
both from a ground level query image, and a map of build-
ing footprints. For the remainder of the paper we refer to
the graph generated from the map of building foot prints
as the database graph and the graph generated from query
image as the query graph. The database graph’s nodes are
georefenced, while the query’s are not.

Our graph contains annotations for the nodes, allowing
easy differentiation between “building”, “road” and “inter-
section” nodes. We also use these annotations to embed
other information into the nodes. For example, for every
intersection we also store its degree, the number of street
blocks going into that intersection. For every road we store
its classification, whether its highway, residential, arterial
road, and its approximate heading. While we solely use
these features for this paper, our system is flexible and can
be easily expanded to include additional features. Figure 1a
shows a sample set of buildings and an intersection. We
generate one building node for each A,B,C,D,E,G, an in-
tersection node for F, and two road nodes for streets 1 and
2. All the buildings have edges to their adjacent buildings,
as well as to the road 1 node. Additionally E and G have
an edge to the street 2 node, and the intersection F node.
Figure 1b shows all the nodes and graph in the example
enumerated.

Since all the nodes and edges in our graph are easily
identifiable in a query image, we can create a similar graph
for any query image with interaction from the user. We
show an example query graph superimposed onto its query
image in Figure 2a. The buildings are denoted by red cir-
cles, the intersections by blue circles, and the road by a gray

(a)

(b)

Figure 1: (a) Example buildings and intersections; (b) graph superimposed on the buildings and intersections.

circle. This graph model is anchored to real world georefer-
enced entities, so it is independent of features of the actual
query image such as camera field of view, time of day and
lighting. Nevertheless there is still room for measurement
error from the human user. For instance, certain queries
have occluded intersections that ultimately make the query
graph look different from the correct graph representation
of the same location in the database graph. We account
for this uncertainty by adding edge weight between 0 and
1, corresponding to uncertainty. We then connect non ad-
jacent buildings such as those across an intersection with
“low weight” edges. The value of these low weights, and
how aggressively to add these edges can be a tuneable pa-
rameter. These weights are used in the matching algorithm
to be covered in Section 6.

4. Building Database Graph
Even a small town has thousands of buildings and inter-

sections, so it is imperative to automatically generate the
database graph for a geographic region. Fortunately, urban
environments have a great deal of easily exploitable struc-
tures and patterns when it comes to building the graph.

We begin with a set of building footprints and OSM
roads for the area of interest. The building footprints are
either generated manually or obtained from OSM. We then
generate a set of intersections from the roads. The set of

(a)

(b)

Figure 2: Example graphs for (a) an image, (b) video query.

buildings centers, roads, and intersections constituite all the
nodes in our graph.

Before adding any edges, we first preprocess to gen-
erate KD-trees for building centroids and road segments
midpoints. This improves the performance of our algo-
rithm since it relies heavily on nearest-neighbor search in
2-D space. We begin by adding edges between intersection
nodes and the road nodes that make up the intersection. This
step is a rather simple as the edges are explicitly given by
the OSM data.

Next, we link buildings on a road with a node repre-
senting that road. This process is shown in Figure 3. For
each building bi we find its Kr closest roads using our pre-
computed road segment KD-tree and call this set Si. We
also query our building KD-tree to find its Kb closest build-
ings and call this set Bi. For each road Sik in Si, we then
extend a vector vi from bi to Sik . Then, for every neigh-
bor building in Bi and every neighbor road in Si that is not
Sik , we check whether any of them intersects vi. If not, we
draw an edge from bi to Sik . This algorithm preserves the
semantic meaning for a building to be “on a road”, since its
“view” of the road is unobstructed by any other building,
and it is “close” to the road.

Having generated edges from buildings to the road(s)
they belong to, we connect buildings to their neighbors.
We precompute a KD-tree consisting of the centroids of the
building footprints. Then for each building bi we enumerate
its Kb nearest neighbors denoted by Ni. Let Ri be the set
of roads that bi has an edge to. Then for each building bk
in Ni we discard the ones where Ri ∩ Rk = ∅ i.e when bi
and bk share no roads. Then we filter the remaining candi-
dates and remove any bk where the shortest path from bi to
bk crosses a road. By definition, adjacent buildings cannot
sit on opposite sides of any roads. Last, we connect bi with
its nearest neighbor bk. Finally, to connect intersections to
their adjacent buildings, we simply take the intersection xi

and connect it to its nearest neighbor building on each block
the intersection is connected to. We can modify this pro-
cess to add the previously mentioned “low-weight” edges
to the next Kn nearest neighbors in both the intersection
and building case.

We opt to have humans manually generate the graphs for
queries as shown in Figure 2. Specifically our system has a
web user interface that allows for a user to upload a query
image and click around the image to generate all the neces-
sary nodes and edges. For video queries we stitch together
frames to cover the entire field of view of the camera as
shown in Figure 2b. The output format for this query graph
is identical to the format of the database graph. An example
of the graph for an image with one road, two intersections,
and 14 buildings is shown in Figure 2b.

5. Subgraph Isomorphism Algorithm
The main component of our method is the approximate

subgraph isomorphism algorithm, which allows for efficient

retrieval between the query graph and the large georefer-
enced database graph. Subgraph isomorphism is known to
NP-Hard [3]. It is a well studied problem with many heuris-
tically optimized and specialized algorithms that perform
well in practice. We have based our algorithm on the error
tolerant path matching approach by Moustafa et al [12]. A
path is defined to be a collection of nodes and edges. A
example of a path in Figure 1b is [A,B,C,D,E].The path
matching approach searches for matches of individual paths
in the subgraph to find a consistent subgraph within these
path matches. While [12] finds isomorphisms between two
feature-rich graphs with the same number of features on
both the query and database side, our algorithm utilizes the
position and geometric information found in the database
not present in the query graph to further prune the search
space.

Furthermore due to the geometric nature of our problem,
our nodes have a low maximum degree resulting in a lower
algorithmic complexity than the one in [12]. The number
of paths in a regular graph without geometric constraints
is O(NN) whereas the number of paths in our geometri-
cally constrainted graph is O(kN) where k is a small con-
stant corresponding to the maximum degree of any node in
our graph, and N is the total number of nodes in our graph,
which could be a very large number. Empirically we have
found k to be roughly 7 in our datasets.

Our system consists of an offline and online phase as
shown in Figure 4. The offline phase runs once on
the database graph and stores the graph and certain pre-
computations in an efficient manner. The goal of the of-
fline phase is to generate an efficient lookup structure for
query paths. We generate this structure by decomposing the
database graph into all paths potentially visible by query im-
ages and “summarizing” each path by the information vis-
ible at query time. The online phase also decomposes the
query graph provided by the user into a set of paths. Then it
uses the previously generated lookup structure to efficiently
find a list of candidate paths for each query path, which
are then pruned using a variety of techniques to achieve a
small set of final candidate subgraphs. Next, we explain
each phase in more detail.

5.1. Offline Database Generation

The offline phase consists of 3 key steps as outlined in
Figure 4. The first and arguably most expensive part of the
offline phase is the path decomposition. One possibility is
to extract every path of length less than Np, an input pa-
rameter of our algorithm. However extracting all the paths
would yield poor performance. As such, it is desirable to
only extract paths visible in a query image. For instance,
paths that make sharp turns and span multiple orthogonal
roads are highly unlikely to be observed in a query. Thus,
intuitively a path consists of a row of adjacent buildings on

(a) (b)

Figure 3: The two steps involved in attaching a road with a building. First in (a) we draw a vector from the building to all the
nearby roads. Then in (b) we only keep the vectors that do not cross other buildings.

(a) (b)

Figure 4: (a) Offline phase block diagram (b) Online phase block diagram.

one road excluding the building on an intersection.
Formally, for each path pi let Ni be the set of neighbor-

ing roads of the buildings on that path 1, rk be roads in the
database, and bk buildings in the database. That is

Ni = {ri : ∃(rk, bk) ∈ edges, bk ∈ pi, bk ̸= intersection}

If Ni is not a singelton, we discard pi as a path reflecting the
fact that all buildings on a path are one road. For each path
in our final path decomposition, we multiply all the edge
weights along the path to obtain a path confidence value pci
stored along with the path. An example of a valid path in
Figure 1b is [A,B,C,D,E].

1In computing N we of course ignore corner buildings in the path as
they are always on two roads.

After extracting all “interesting” paths from the database
graph, we generate a “path summary”. These path sum-
maries, consist of low error, low entropy attributes for
the nodes in the path, and are reliably consistent be-
tween the query and database. For example the path
[C,D,E, F,G] from Figure 1b would be summarized as
[(bld), (bld), (bld), (deg4int), (bld)], where bld stands for
building and deg4int stands for a four way intersection. We
can add more features to this step to make it more discrim-
inative at the cost of increasing the number of unique sum-
maries.

Next for each unique summary Si, we take the list (PL)i
of all paths whose summaries are Si and insert the key value
pair (Si, (PL)i) into an persistent key value store. We also
store a histogram H of our summaries to keep track of the
number of paths that are summarized to Si. For each Si

we store the number of unique paths in the list (PL)i. as
H[Si], i.e

H[Si] = |(PL)i|

We use this quantity later in Section 5.2 for choosing a rea-
sonable path decomposition of the query graph.

5.2. Online Query Localization

The online phase of our system consists of 5 key steps as
outlined in Figure 4b. The first three steps break down the
query graph into paths, summarize the paths, and use the
previously generated path summary key value store to find
candidate paths in the database graph for each query path.
The final two stages use attributes stored in the nodes and
geometric constraints imposed by the query image to prune
the number of candidate paths.

Path decomposition in the query side works almost iden-
tically to its offline counterpart, the only advantage being
that the query graph is quite small, and its path decompo-
sition can be computed rapidly. In order to find a subgraph
match we need to match every node in the subgraph to a
candidate node in the database graph. To do this on a path
by path basis, we need a set of paths that “cover” the entire
query. In other words the union of the nodes and edges in
all the paths chosen, must equal all the nodes and edges in
the query graph.

Not all path covers are equally desirable. Certain paths
are highly discriminative because their path summary maps
to fewer unique paths. These usually yield faster and better
localizations. We model the path cover problem as an in-
stance of set cover. Rather than minimizing the total number
of sets, we minimize the total cost. This cost for each query
path Pi is defined to be the histogram value for the summary
Si computed for the path, H[Si] divided by the number of
nodes in Pi. Intuitively this cost assigns “rarer” and longer
paths a lower cost, since a smaller histogram value means
the path is discrimintive, and a longer path means it has
more information. Set cover is also NP complete, but for
this particular instance, the standard greedy approximation
suffices. As an example the cover set for Figure 2a would
be a path consisting of all buildings on the right side of the
road, and a path consisting of all the buildings on the left
side and the two intersections.

After solving the instance of set cover, we have a set of
the most discriminative paths P containing all the nodes
and edges in the query. When computing the cost we ignore
any paths whose confidence is lower than α, a runtime pa-
rameter of the matcher. We then generate a mapping from
each query path to its matching candidate paths from the
database.

Next we wish to reduce the number of candidate paths.
This is done in 3 steps, node level, path level, and geom-
etry level. For node level pruning, we enumerate all the
nodes in all candidate paths. Each node ni in the candidate

node list with a matching query node qk must have neigh-
bors consistent with qk. The neighbors of ni is defined to
be the all nodes that have an edge to ni. Since the query is
a subgraph, at no point can a matching node in the database
graph have fewer neighbors of any type than a query node.
Node level pruning then prunes any nodes that do not meet
this criterion and their associated paths. We can also poten-
tially prune other node level characteristics not included in
our path summary here, such as height, color or footprint
area.

Next, we examine path level characteristics, namely
road type, and path direction. OSM provides road clas-
sifications for every road in our area of interest, and the
user can approximately classify a road in the query, since
its quite easy for a human to differentiate between a high-
way and a residential road. Using these classifications, we
discard candidate paths that are on inconsistent roads with
respect to the query.

Using shadow analysis techniques from [4], the user
can approximate the heading of the roads in the query im-
age. This combined with the existing headings for roads
provided by OSM allow us to eliminate more inconsistent
paths. In practice we have found this method to be effective
in discriminating between north-south and east-west roads.

Finally we enforce the geometry between the paths in the
query to be preserved. We look for three geometric relation-
ships:

1. Two paths sharing a road with each other.

2. Two paths being geographically“close” to each other.

3. Two paths overlapping.

To deal with all of the above at once we generate a KPar-
tite Graph. This graph is a metagraph where there is a node
for each candidate database path and a node for query path.
We draw an edge between two nodes in this graph if they
share one of the above relationships. We then use the edges
to enforce candidate paths to have the same geometric re-
lationships the query paths have. These edges have a label
ek denoting the types of the relationship it signifies. Query
path nodes only have edges to other query path nodes, and
candidate path nodes only have edges to other candidate
path nodes.

For every two query paths qi and qj that share a partic-
ular edge relationship ek, we enforce every candidate path
of qi to have an edge of type ek to a candidate path of qj .
A candidate path without such an edge is geometrically in-
consistent and is removed from our candidate list. We then
iterate this algorithm to a fixed point, when no paths a re-
moved

The above algorithm is invariant to the types of ek. Cur-
rently our system supports the three geometrical consis-
tency points listed above, but can easily be expanded to sup-

Query # Query Size
(Nodes,
Edges)

Query
Intersec-
tions

Search
Space
Reduction

002 17,31 2 53.1
012 16,29 1 23.9
107 12,21 2 170
142 18,33 2 65
192 4,5 1 6.4
197 15,28 1 57.5
B1 6,9 1 9.6
B2 7,11 1 50.5
B3 9,15 1 62.4
B4 11,19 1 8.2
B5 12,21 2 50.5
B6 12,21 2 161.8
B7 7,11 0 2.14
B9 9,15 1 8.2
B10 8,13 1 50.5
B11 7,11 1 53.4
B12 7,11 1 7.4
B13 6,9 1 11.6
B14 9,15 1 8.2
B15 6,9 1 8.4
B16 9,15 1 12.0
B17 10,17 1 12.0
B18 9,15 1 12.0

Table 1: Performance Analysis for 6 queries in Amman,
Jordan and 18 queries in Berkeley, CA.

port more since the pruning algorithm remains unaltered.
For every pair of database paths (pi, pk) we draw an edge
of type “close” between them, if their Euclidean distance
is less than d. This parameter is set by the user depending
on the extent of the query. All query paths are considered
“close” to each other. We draw an edge of type “road” if
(pi, pk) are on the same road. This relationship only ex-
ists between two query paths if they share a road. Finally
we draw an edge of type “overlap” if (pi, pk) overlap at
any point. Again this relationship is mirrored on the query
side. In practice we have found this KPartite matching to
be highly effective in pruning the search space for our lo-
calization.

Finally after all the pruning, we connect the nodes in our
resultant paths to get a subgraph that represents all the loca-
tions the query graph could exist in.

6. Evaluation and Results

We use the graph database engine Neo4j to store the
database graph, and use MongoDB to store our path pre-
computations. We have tested our algorithm on queries

0 50 100 150 200
Search space Reduction

0

2

4

6

8

10

12

of

 Q
ue

rie
s

Berkeley
Jordan

Figure 5: Search space reduction histogram.

2 4 6 8 10 12 14 16 18 20
Query Nodes

0

50

100

150

200

S
ea

rc
h

sp
ac

e
R

ed
uc

tio
n

0 intersections
1 intersections
2 intersections

Figure 6: Search space reduction as a function of the size of
the query graphs.

Figure 7: Example localization for query #197; red repre-
sents location of candidate subgraphs, green is all possible
locations in the area of interest, and ground truth is circled.

in various locations in Amman, Jordan and the city of
Berkeley, CA. We manually generated a building footprint
database for Amman and its suburbs and used OSM foot-
print database for Berkeley. The ground truth location of
the queries are known. Data for roads and intersections in
both locations is from OSM.

Since our primary motivation is user-aided geolocation,
typical metrics such as the percentage of top-1 matches are
ill suited for evaluating our system. Rather, we opt for a
metric involving the number of subgraphs left in our area
of interest after a query has been provided. Each one of
these subgraphs represents one particular localization of our
query. We define search space reduction to be

nodes in Area of Interest
candidate subgraphs

The three evaluation regions in Jordan are of size 27km2
for query 197 with a graph size of (10300; 14500), 3km2

for queries 002, 012, 107 and 142 with a graph size of
(3400; 5200) and 13km2 for queries 107 and 192 with a
graph size of (3400; 5200) where the first and second num-
bers in graph size correspond to the number of notes and
edges respectively. The evaluation region in Berkeley is of
size 47km2 with graph size of (28000; 27000). We use a
maximum path size of 10 for database generation.

Table 1 summarizes the results for 6 queries in Amman
and 18 queries in Berkeley. In the best case corresponding
to a query with two intersections we reduce the search space
by a factor of 170, and in the worst case corresponding to
a query with no intersections, the reduction is a factor of 2.
The histogram of search space reduction is shown in Fig-
ure 5. As seen the median search space reduction is 12,
and the mean is 39.4. In Figure 6 we plot search space re-
duction as a function of number of query nodes and color
the points to indicate the number of intersections present in
the query. As seen, intersections are critical in geolocating
images. Figure 6 shows the best performing queries have 2
intersections in the field of view, while the worst performing
query has no intersections. This is expected as intersections,
though prevalent in an urban landscape, are rare enough that
a pattern of buildings between two intersections forms a dis-
tinctive signature. We also observe in Figure 6 an inverse
correlation between query graph size and resultant subgraph
size. As expected, larger graphs are more informative of the
scene, and should yield better localization. Figure 7 shows
the resultant subgraph for query 197 in Jordan. The green
dots denote all the nodes in our region of interest graph, the
red dots represent the locations of the resultant subgraphs,
and the ground truth is circled. As seen the candidate sub-
graphs are more or less uniformly spread throughout the re-
gion of interest, but the area they take up is a small fraction
of the entire area. When there are multiple intersections of
varying degree, the system performs well, as these patterns

are “rare”. When these conditions are met, we obtain as
few as 20 resultant subgraphs or reduction factor of 170, for
most queries entire pipeline runs in less than 360 seconds.

We now examine detailed statistics of query # 142 in Ta-
ble 1 shown in Figure 2a as it is processed through our sys-
tem. The area of interest for this query has 3,400 nodes and
5,200 edges. Database generation created 107,331 unique
paths, and 178 unique path summaries. We ran the online
phase with an α value of 0.5 and it decomposed the query
graph into 6 covering paths. Initially there were 340 can-
didate subgraphs and after node, shadow, and path prun-
ing there were 200 candidates remaining. The geometry
pruning finally brought the candidate count to 64. The en-
tire pipeline for this query takes 300 seconds, where the
database generation took 31 seconds, path and node level
pruning took 15 seconds, and geometry pruning took 224
seconds. Though geometry pruning took the most time, it
is by far the most effective in reducing the number of can-
didates.

7. Conclusions and Future work
In this paper, we have presented a system for user aided

image localization by exploiting the inherent graph like
structure of urban streets, buildings and intersections. We
reduce the search space in an area of interest by solving an
approximate subgraph isomorphism problem in an efficient
manner. Experimental results for Berkeley, CA and Amman
Jordan showed search space reduction between 2 and 170,
depending on the number of intersections.

By far the largest shortcoming of the system is lack of
features. Currently our node attributes consist of node type,
intersection degree and road type. There are many easily
observable characteristics for buildings, intersections and
roads, such as color, height, road elevation, and presence of
vegetation that we could easily exploit to significantly prune
our search space. Other areas of future work include auto-
matic detection of buildings and roads from satellite images
for areas with no OSM data, and automatic construction of
the query graph.

8. Acknowledgments
Supported by the Intelligence Advanced Research

Projects Activity (IARPA) via Air Force Research Labora-
tory, contract FA8650-12-C-7211. The U.S.Government is
authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation
thereon. Disclaimer: The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of IARPA, AFRL, or the
U.S. Government.

References
[1] G. Baatz, O. Saurer, K. Köser, and M. Pollefeys. Large scale

visual geo-localization of images in mountainous terrain.
In Computer Vision–ECCV 2012, pages 517–530. Springer,
2012. 1

[2] M. Bansal, H. S. Sawhney, H. Cheng, and K. Daniilidis.
Geo-localization of street views with aerial image databases.
In Proceedings of the 19th ACM international conference on
Multimedia, pages 1125–1128. ACM, 2011. 1

[3] E. Bengoetxea. Inexact graph matching using estimation
of distribution algorithms. Ecole Nationale Supérieure des
Télécommunications, Paris, 2002. 2, 4

[4] M. Clements and A. Zakhor. Shadow analysis for camera
heading in image geo-localization. 2, 6

[5] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty
years of graph matching in pattern recognition. Interna-
tional journal of pattern recognition and artificial intelli-
gence, 18(03):265–298, 2004. 2

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)
graph isomorphism algorithm for matching large graphs.
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 26(10):1367–1372, 2004. 2

[7] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros.
What makes paris look like paris? ACM Trans. Graph.,
31(4):101, 2012. 1

[8] A. Gallagher, D. Joshi, J. Yu, and J. Luo. Geo-location infer-
ence from image content and user tags. In Computer Vision
and Pattern Recognition Workshops, 2009. CVPR Workshops
2009. IEEE Computer Society Conference on, pages 55–62.
IEEE, 2009. 1

[9] J. Hays and A. A. Efros. Im2gps: estimating geographic
information from a single image. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1–8. IEEE, 2008. 1

[10] H. Hu, G. Li, and J. Feng. Fast similar subgraph search
with maximum common connected subgraph constraints.
In Big Data (BigData Congress), 2013 IEEE International
Congress on, pages 181–188. IEEE, 2013. 2

[11] T.-Y. Lin, S. Belongie, and J. Hays. Cross-view image ge-
olocalization. In Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pages 891–898. IEEE,
2013. 1

[12] W. E. Moustafa, A. Kimmig, A. Deshpande, and L. Getoor.
Subgraph pattern matching over uncertain graphs with iden-
tity linkage uncertainty. In Data Engineering (ICDE), 2014
IEEE 30th International Conference on, pages 904–915.
IEEE, 2014. 2, 4

[13] M. Neuhaus and H. Bunke. An error-tolerant approximate
matching algorithm for attributed planar graphs and its ap-
plication to fingerprint classification. In Structural, Syn-
tactic, and Statistical Pattern Recognition, pages 180–189.
Springer, 2004. 2

[14] R. Peteri, J. Celle, and T. Ranchin. Detection and extrac-
tion of road networks from high resolution satellite images.
In Image Processing, 2003. ICIP 2003. Proceedings. 2003
International Conference on, volume 1, pages I–301. IEEE,
2003. 1

[15] S. Ramalingam, S. Bouaziz, P. Sturm, and M. Brand.
Skyline2gps: Localization in urban canyons using omni-
skylines. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 3816–3823.
IEEE, 2010. 1

[16] G. Schindler, M. Brown, and R. Szeliski. City-scale loca-
tion recognition. In Computer Vision and Pattern Recogni-
tion, 2007. CVPR’07. IEEE Conference on, pages 1–7. IEEE,
2007. 1

[17] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient
subgraph matching on billion node graphs. Proceedings of
the VLDB Endowment, 5(9):788–799, 2012. 2

[18] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. In
Proceedings of the 13th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 737–
746. ACM, 2007. 2

[19] E. Tzeng, A. Zhai, M. Clements, R. Townshend, and A. Za-
khor. User-driven geolocation of untagged desert imagery
using digital elevation models. In Computer Vision and Pat-
tern Recognition Workshops (CVPRW), 2013 IEEE Confer-
ence on, pages 237–244. IEEE, 2013. 1

[20] J. R. Ullmann. An algorithm for subgraph isomorphism.
Journal of the ACM (JACM), 23(1):31–42, 1976. 2

[21] A. Zamir and M. Shah. Image geo-localization based on
multiple nearest neighbor feature matching using general-
ized graphs. 2014. 2

[22] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki.
Attributed graph mining and matching: An attempt to de-
fine and extract soft attributed patterns. In Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE Conference on,
pages 1394–1401. IEEE, 2014. 2

