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Abstract
Efficient plant phenotyping methods are necessary to accel-

erate the development of high yield biofuel crops. Manual mea-
surement of plant phenotypes, such as height is inefficient, labor
intensive and error prone. We present a robust, LiDAR based ap-
proach to estimate the height of biomass sorghum plants. A ver-
tically oriented laser rangefinder onboard an agricultural robot
captures LiDAR scans of the environment as the robot traverses
between crop rows. These LiDAR scans are used to generate
height contours for a single row of plants coorsponding to a given
genetic strain. We apply ground segmentation, iterative peak de-
tection and peak filtering to estimate the average height of each
row. Our LiDAR based approach is capable of estimating height
at all stages of the growing period, from emergence e.g. 10 cm
through canopy closure e.g. 4 m. Our algorithm has been exten-
sively validated by several ground truthing campaigns on biomass
sorghum. These measurements encompass typical methods em-
ployed by breeders as well as higher accuracy methods of mea-
surement. We are able to achieve an absolute height estimation er-
ror of 8.46% ground truthed via ”by-eye” method over 2842 plots,
an absolute height estimation error of 5.65% ground truthed at
high granularity by agronomists over 12 plots, and an absolute
height estimation error of 7.2% when ground truthed by multiple
agronomists over 12 plots.

1. Introduction
Understanding the relationship between genotypes and phe-

notypes of plants is essential to the optimization of the biofuel
production pipeline. By accurately characterizing physiological
traits of plants, it is possible to determine connections between
plant gene sequences and biomass yield. Specifically, sorghum
has been demonstrated to be a suitable source of fuel in practice
[1, 2]. To determine the genotype-phenotype map for sorghum,
rapid phenotyping methods are necessary for efficient data col-
lection. Currently, plant phenotyping is done by hand, presenting
a bottleneck in the growing pipeline [3]. Manual collection of
physiological traits is labor intensive, time consuming, inaccurate
and does not provide nearly enough data to supplement the geno-
types available. Therefore, it is essential to develop systems that
automatically, accurately and efficiently phenotype in situ plants.

Plant height is of particular to geneticists and breeders as it
is a good indicator of biomass yield [4]. We propose a practi-
cal and robust method that estimates biomass sorghum height at
all stages of the growing period. Specifically, we estimate the
height of plant stalks using data collected in field conditions mea-
sured by a scanning LiDAR mounted onto a mobile robotic plat-
form, which traverses through rows of densely positioned plants.
We propose two algorithms, a peak based method for determining
plant height before canopy closure, and a percentile based method

after canopy closure. We show height estimation with less than
10% average error across extensive validation campaigns.

2. Related Work
Various height estimation methods have been developed to

take advantage of 3D sensors. These can be divided into two
major categories: passive and active sensing systems. Current
passive sensing methods are particularly susceptible to changes
in ambient lighting conditions and suffer from low spatial reso-
lution [5]. These sensitivities are of particular importance in the
context of a crop field, where lighting conditions are highly vari-
able and dense foliage offers ample opportunity for full or par-
tial sensor occlusion. LiDAR, an active sensor, is ideal for direct
measurement of canopy height and architecture, offering many
advantages over passive sensing including: (1) operation despite
variable lighting conditions and (2) high spatial resolution offer-
ing greater data reliability in the face of occlusions [5, 6].

Existing methods of height estimation via LiDAR primarily
use static measuring systems[7, 8, 9]. For example, Phan et. al.
[8] mount a 3D laser scanner at a high vantage point overlooking
a field and estimate plant height from the 3D point cloud. Friedli
et. al. [9] also extract canopy height using 3D laser scanners in
fixed locations throughout the field.

We focus on mobile measuring systems in order to leverage
the mobility and flexibility of agricultural robot systems with the
ability to traverse between crop rows. Previous methods of mobile
height estimation make use of a top down approach that employ
stereo cameras mounted on a mast on the robot [10, 11]. In ad-
dition to being susceptible to issues endemic to cameras such as
occlusion and a narrow field of view [11], a top down approach
requires that the sensor be mounted on a mast above the canopy,
severely limiting the range of plant heights that can be measured
and reducing the overall mobility of the agricultural robot.

In this work, we develop a bottom-up LiDAR based ap-
proach that overcomes the mast based issues of previous height
estimation setups, eliminating the need for readjustment through-
out the growing season and allowing the robotic system a greater
degree of mobility between dense crop rows.

The rest of the paper is organized as follows: Section 3 de-
scribes our experimental setup, in Section 4, we outline our pro-
posed approach; Section 5 includes experimental results. Finally
in Section 6, we discuss implications of our findings and future
work.

3. Setup
In the 2018 growing season, surveys were carried out on

sorghum field at the University of Illinois Urbana Champaign and
an University of California Davis. Four field campaigns were car-
ried out between the 8th of June and 10th of October, covering the



entire growing season.

Figure 1: A top down view of a single plot.

Each field is subdivided into plots measuring 3 m by 3 m
shown in Figure 1. The Illinois field contained 864 plots while
the Davis field contained 250. Each sorghum plot contains either
a unique genetic strain or a microbial treatment. Since geneti-
cists are primarily interested in comparing statistical parameters
of phenotypes across plots, our goal is to estimate the average
stem height for each plot

Figure 2: Back view of the sensor set up on the agricultural robot.

Each plot consists of four rows of sorghum, planted by pre-
cision planter 70 cm apart from each other. To collect data, a ver-
tical facing Hokuyo UST-10LX is mounted onto mobile robotic
platform as in Figure 2, traversing the center row of each plot.

4. Proposed Approach
In this section, we propose two height estimation algorithms:

Peak and Percentile methods. The former is used in the early
growth season and the latter when the canopy closes.

4.1 Peak Method
As shown in Figure 3, our proposed peak based algorithm

consists of four main stages: height contour generation, ground
segmentation, adaptive peak detection, and peak filtering. The
first stage calculates height for each scan to generate height con-
tours for each plot. Second, the ground segmentation stage applies
RANSAC to the resultant height contour to separate points corre-
sponding to the ground from plants. Plant regions are combined
into a single contiguous planted region, analogous to the planted
region determined by precision planter. Third, adaptive peak de-
tection leverages knowledge of the number of plants planted in
each row by precision planter to detect the appropriate number of
peaks in a height contour. These peaks are determined by a slid-
ing window and over the planted region. Lastly, peaks are filtered
to remove outliers. In what follows, we will describe each step of
the algorithm.

4.1.1. Height Contour Generation
Our initial goal is to capture the silhouette of a row of plants,

creating a 2D representation of plant heights throughout a row, as
show in Figure 4. We refer to this line as a ’height contour’.

We refer to a single rotation of the LiDAR as a single scan as
seen in Figure 5. As the robot traverses a row of plants, it collects
scans at regular intervals. We limit the range of the scan to 70 cm
on either side of the robot in order to restrict the field of view to
center rows as shown in Figure 1. In line with manual measure-
ment methods, breeders only measure center rows as they are less
affected by fringe effects. To estimate a height contour, we find
the maximum y-value for each scan and concatenate these max-
imum heights together over the entire run of the data collection.
An example of the resultant height contour is shown in Figure 6.

4.1.2. Ground Segmentation
Next, we segment the height contour into ground points and

planted points. To determine the ground points in the height con-
tour, we run RANSAC on the bottom 10% of all points of the
height contour which fits a horizontal line to the ground points.
The fitted line and segmented height contour can be seen in Fig-
ure 7.

It is necessary to define a single contiguous planted region
for each height contour due to gaps in planting and noise from
other objects such as humans or equipment in the field caught in
view of the LiDAR. For each height contour, we define contiguous
regions of more than ten LiDAR return points which were not
found to be part of the ground as a planted segments. ’Planted
segments’ smaller than ten points in width are likely to be weeds
or other objects in the field. For each row we find the first planted
region and the last planted region and concatenate these together
to form a single, contiguous planted region as seen in Figure 8 to
run peak detection, ignoring the rest of the height contour.

4.1.3. Iterative Peak Detection
To accurately average the heights of the plants, we distin-

guish individual plant maximum heights by performing peak de-
tection on the height contour. We define a peak to be any point
that is greater than a window of k of its neighbors. k is determined
iteratively by the number of peaks found in a single row. The rows
are planted by a precision planter that plants anywhere from 25-
40 plants per row, so we iteratively run peak detection and adjust



Figure 3: Diagram of proposed pipeline.

Figure 4: Agricultural robot travels across a row, collecting ver-
tical LiDAR scans. The blue line represents the height contour
generated by concatenating these scans in the direction of motion
of the robot.

Figure 5: A single LiDAR scan.

k until we have found between 25-40 peaks in a single contiguous
planted region as shown in Figure 9.

4.1.4. Peak Filtering
There may be weeds, sickly plants or other sources of noise

in the field that can affect the detection at the terminations of the
detected planted region. These are reflected in the final shape of
the height contour and by erroneous peaks at the edges of single
planted region. We leverage the fact that the robot travels between
two rows and so both left and right height contours for a single
plot are calculated at the same time. If either the left or right row
suffers from one of these types of noise, we are able to account

Figure 6: Height contour for a single row.

Figure 7: Ground segmentation of height contour. Blue points
correspond to planted points, yellow points are determined to be
ground points. The red line shows the estimated ground height
found by averaging ground point heights.

Figure 8: Portion of the height contour in green denotes the single
planted region found.

for it by discarding all the peaks found outside the bounds of the



Figure 9: Number of peaks detected increases as k is increased.

other row. In Figure 10 peaks that have been removed due to
inconsistencies between left and right rows are shown in blue. We
found this to be a robust method to remove erroneous peaks at the
edges of the generated height contour.

Figure 10: Right and left contours for a single plot. Green points
are part of the ground region and are not eligible for peak detec-
tion. Blue points in the right contour are outside of the bounds the
left row and are removed. Red points are filtered because they are
too far from the mean. The red line shows the estimated height by
the peak method.

Finally we perform simple outlier filtering of peaks found
outside of two standard deviations of the peak average, either due
to reflections or objects moving in view of the LiDAR. These fil-
tered peaks are shown by the red points in Figure 10. We average
together the the heights of the remaining peaks to determine the
estimated height for the plot. The estimated height is represented
in Figure 10 by the red horizontal line.

4.2. Percentile Method
Our peak based method assumes that peaks in the height

contour correspond to individual plant stems in the row. While
this may be generally true before canopy closure, after the canopy
closes, individual peaks are not representative of individual stems.
In these cases the performance of our peak based method suffers
resulting in a significant underestimation of plant heights.

We propose a percentile method for which the first two stages

of the algorithm, height contour generation and ground segmen-
tation are identical. However, rather than detecting and filtering
peaks, we simply take a top percentile of the ’planted’ points.
These planted points are points remaining in the height contour
after the ground has been segmented out. The 75th percentile is
determined empirically so as to result in a less than 10% error
across all datasets. It is important to note that the optimum per-
centile was not the same across all datasets.

5. Results
We present three experiments to evaluate our algorithm in

several ways. First, we show that our algorithm outperforms con-
ventional hand measurement methods and generalizes to all stage
of the growing season for plant heights ranging from 10 cm to 4
m. In our second experiment, we determine the accuracy of our
method. Finally, we measure the variability in human measure-
ment use to evaluate our performance throughout these experi-
ments.

5.1. Experiment 1: Comprehensive By-Eye Mea-
surement

Figure 11: By eye method of height measurement. A single mea-
surement is recorded per plot.

To mimic existing methods of phenotype data collection, our
team collected ground truth height data via traditional methods
for 864 plots with varying genetic strains over three dates as well
as an additional 250 plots at a fourth date. Measurement was
performed by the by-eye method currently employed by breeders.
This entails placing ones eye to the level of one of the rows and
visualizing the line that encompasses the majority of the tops of
the plants as shown in Figure 11. The distance from the visual
line to the ground is the height estimate for the plot. The plants
ranged from 5 cm - 120 cm.

Date
Number
of Plots

Height
Range (cm)

Average
% Error

Average
Absolute
% Error

6/8 800 0-30 6.6 12.6
6/25 800 50-100 3.2 5.1
10/3 250 80-120 -7.2 8.3
8/3 800 120-400 -9.3 11.7

Table 1: Comprehensive By Eye Measurement: Peak Method.

Table 1 shows the peak based height estimation error as well
as the number of plots in each data collection for Experiment 1.
As seen, for each data collection we achieve an average % error



Figure 12: Comprehensive By Eye Campaign: Peak Method.
Measured height is on the x-axis and the estimated height is on
the y-axis.

less than 10 %. Figure 12 plots the results of the Experiment 1 on
a correlation graph where the x-axis denotes the measured ground
truth and the y-axis shows the estimated lidar height, resulting in
an absolute average error of 8.46%. The datasets with the greatest
average absolute error are the June 8th and August 3rd datasets,
representing the two extremes in terms of plant height. The poor
performance of the June 3rd dataset is explained by the minute
stature of the plants this early in the growing season. Plants at
the time of collection ranged in height from 0-30 cm, resulting
in tighter margins of error. The poor performance of the the Au-
gust 3rd dataset is due to canopy closure, where all the plants are
greater than 120 cm, and a peak based method of height estima-
tion may not be suitable.

Date
Number
of Plots

Height
Range (cm)

Average
% Error

Average
Absolute
% Error

6/8 800 0-30 9.1 12.9
6/25 800 50-100 4.7 5.7
10/3 250 80-120 -8.8 9.7
8/3 800 120-400 0.3 6.6

Table 2: Comprehensive By Eye Measurement: Percentile
Method.

Table 2 shows the height estimation error for the percentile
based method and Figure 13 plots the results of the percentile
based method on a correlation graph. We achieve similar perfor-
mance across all four datasets. The average absolute height esti-
mation error for the percentile method is 8.51% which is slightly
higher than that of the peak method with 8.46%. The percentile
based method generally overestimates more for plants earlier in
the growing season compared to the peak base method. After
canopy closure, the percentile based method performs better than
the peak based method, underestimating far less, resulting in a

Figure 13: Comprehensive By Eye Campaign: Percentile
Method. Measured height is on the x-axis and the estimated
height is on the y-axis.

0.3% average error compared to a -9.7% average error via the
peak based method.

5.2. Experiment 2: High Resolution Measurement

Figure 14: High resolution method of height measurement. Mea-
surements are taken every 10 cm of the row and averaged together
per plot.

To develop more rigorous measurements to test the accu-
racy of our algorithm, we measured five plots with varying ge-
netic strains over two dates. For the two center rows of each plot,
we took measurements every 10 cm for the length of the plot as
shown in Figure 14. We averaged these measurements per plot to
arrive at the final height measurement for each plot. The plants
ranged from 10 cm - 100 cm.

The results of Experiment 2. are plotted via correlation graph
in Figure 15 where the x-axis denotes the measured ground truth
and the y-axis shows the estimated lidar height. Compared to
Experiment 1, we achieve a much lower average absolute error
of 5.65%. Table 3 shows the performance of the peak method on
each of the individual plants. Again we note that the plots with the
poorest performance are ones where the plants were among the



Figure 15: High Resolution Measurement. Measured height is
on the x-axis and the estimated height is on the y-axis.

Date
Plot

Name
Measured

Height(cm)
Estimated

Height(cm)
Average
% Error

6/8 1 21.4 21.8 1.9
6/8 2 12.2 13.1 7.6
6/8 3 23.8 23.6 -1.1
6/8 4 13.7 11.6 -15.1
6/8 5 23.5 21.2 -9.9

6/25 1 83.2 77.5 -6.8
6/25 2 55.1 56.8 3.1
6/25 3 77.8 74.7 -4.0
6/25 4 55.7 52.4 -5.8
6/25 5 78.9 79.9 -1.2

Table 3: High Resolution Height Measurement: Peak Method.

shortest measured, with differences between ground truth mea-
surement and height estimates of less than 3 cm.

5.3. Experiment 3: Human Variability

Figure 16: Human variability method of height measurement.
Multiple data collectors perform 3 rounds of measurement and
their measurements are averaged together per plot.

We measured the variability associated with human measure-
ment of sorghum plants. Specifically, seven researchers indepen-

dently took measurements of 12 plots of varying genetic strains
on the same date in three rounds. Each researcher measured each
plot employing the by-eye method three times as shown in Figure
16. The average of all three rounds over all researchers for each
plot was used as the ”true ground truth” for each plot. The plants
ranged from 20 to 210 cm.

Figure 17: Human Variability Measurement. Plot names are on
the x-axis and height is plotted on the y-axis. Each colored dot
represents the average height for that collector for that plot. The
right and left carets show the LiDAR estimate and average of by-
eye measurement across all collectors respectively.

Average %
Variability

Average
Absolute

% Variability
Collector 1 -4.3 6.9
Collector 2 -4.9 8.8
Collector 3 10.3 11.9
Collector 4 0.9 4.3
Collector 5 0.7 4.6
Collector 6 -5.4 10.0
Collector 7 3.4 8.9

LiDAR -2.2 7.2

Table 4: Average percent variability for each human collector and
LiDAR.

Experiment 3 results are shown in Table 4 and Figure 17.
In Table 4 collector variability represents the average difference
for each collector from the ”true ground truth” across the three
trials performed. The LiDAR variability is computed with re-
spect to the ”true ground truth” as well. The LiDAR variability
is 7.2%, outperforming four out of the seven researchers in terms
of absolute average variability. This finding demonstrates that the
variability of our LiDAR based method is on par with that of hu-
man measurement. It also suggests that a major source of error
in our previous results may be due to human variability in the
measurement of ground truth and rather than due to inaccuracies



in the height estimation algorithms. Furthermore, comparing the
increase in performance of the high resolution measurement in
Experiment 2 to the performance of the standard by eye measure-
ment used in Experiment 1 suggests that LiDAR based algorithms
are closer the actual ground truth height than currently employed
by-eye methods of manual measurement.

6. Discussion
In this paper, we introduced two automated algorithms for

estimating the average height of a plot of sorghum crops using
LiDAR mounted on an agricultural robot. Our experiments verify
that our algorithm performs on par with, if not better than cur-
rently employed manual methods and that our algorithm general-
izes to plants at all stages of the growing season ranging in height
from 5 cm to 4 m.

Future work could develop machine learning models that are
able to improve the accuracy of our height estimation from height
contours, especially at greater plant heights after canopy closure.
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