
A Cost-Driven Fracture Heuristics to Minimize External
Sliver Length

Xu Ma, Shangliang Jiang and Avideh Zakhor, Fellow, IEEE

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA, 94706, USA

Email: {maxu,sjiang,avz}@eecs.berkeley.edu

ABSTRACT

In optical lithography, mask pattern is first fractured into basic trapezoids, and then fabricated by the variable
shaped beam mask writing machine. Ideally, mask fracture tools aim at both suppressing the trapezoid count
to speed up the write time, and minimizing the external sliver length to improve CD uniformity. However, the
increasing transistor density, smaller feature sizes, and the aggressive use of resolution enhancement techniques
pose new challenges to write time and CD uniformity. In this paper, we propose a fracture heuristics to improve
the sliver performance of current commercially available fracturing tools. In the proposed approach, the mask
layout is first decomposed into elemental rectangles by the rays emitted from each concave corner. Then, a rect-
angle combination technique is applied to search and eliminate the external slivers from the polygon boundaries
by moving them to the center. This approach guarantees that the resulting trapezoid count approaches the
theoretical lower bound. Compared to a current commercially available fracturing tools, our proposed approach
effectively reduces the external sliver length by 8% to 13%.

Keywords: Fracture, mask data preparation, Variable Shaped Beam mask writing, sliver

1. INTRODUCTION

In optical lithography, light emitted from the illumination system is transmitted through the mask, and replicates
the mask pattern on the wafer.1 Mask writing is a significant step affecting the fidelity of the printed image
on the wafer, and critical dimension (CD) control. During mask data preparation process, the mask pattern is
initially fractured into numerous trapezoids. Subsequently, these trapezoids are exposed by the Variable Shaped
Beam (VSB) mask writing machine. There are two independent metrics to be optimized during the fracturing
process: trapezoid count and total external sliver length. Each trapezoid corresponds to at least one shot in the
VSB mask writing machine. Thus, lower trapezoid count is desired, to reduce the writing time. Figs. 1(a) and
1(b) show two different fracture solutions for the same layout with three and four trapezoids, respectively. The
solution in Fig. 1(a) leads to shorter mask writing time and lower cost. A trapezoid with lateral dimension 𝑤
smaller than a prescribed threshold 𝜖 is referred to as a sliver, as illustrated in Fig. 1.2, 3 In Fig. 1, there are two
kinds of sliver: external and embedded. The external sliver is located on the boundary of the layout, while the
embedded sliver is surrounded by other trapezoids. In Fig. 1(a), the top rectangle is an external sliver, and the
middle rectangle is an embedded sliver. External slivers introduce inaccuracies in the mask writing process4 by
adversely affecting CD uniformity, while the embedded slivers do not.2 Total external sliver length is the sum
of the boundary length with its lateral dimension smaller than the sliver threshold 𝜖. In Figs. 1(a) and 1(b), the
external sliver lengths are indicated in red. Fig. 1(a) shows that the embedded sliver may also contribute to the
total external sliver length. Total external sliver length should preferably be minimized, while the effects of the
internal sliver length can be ignored.

A number of fracturing algorithms have been proposed over the years in the literature.4–9 Ohtsuki, et al.
developed an algorithm to decompose the rectilinear polygons into minimum number of rectangles by searching
the set of maximum independent degenerate lines.5 A rectilinear polygon only has horizontal and vertical edges.
Subsequently, Asano, et al. generalized Ohtsuki’s algorithm to decompose a polygon with slant edges into

Correspondence: avz@eecs.berkeley.edu, 510-643-6777

Optical Microlithography XXIV, edited by Mircea V. Dusa, Proc. of SPIE Vol. 7973,
79732O · © 2011 SPIE · CCC code: 0277-786X/11/$18 · doi: 10.1117/12.879276

Proc. of SPIE Vol. 7973 79732O-1

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

CD regionExternal sliverExternal sliver

Embedded sliver

(a) (b) (c)

w<

Figure 1. Examples of trapezoid count, sliver and CD preservation; fracture solution with (a) three trapezoids, one
external sliver and one embedded sliver; (b) four trapezoids and one external sliver; (c) keeping the CD region intact.

minimum number of trapezoids.6 Moriizumi, et al. proposed a fracturing algorithm to reduce the number of
slivers and to maintain CD without splitting.4 Nakao, et al. introduced a fracturing approach based on “relation
graph” to suppress sliver and CD partition, and to minimize the trapezoid count.7 Kahng, et al. suggested a
fracturing method relying on integer linear programming (ILP) and a set of heuristics to speed it up.8 The ILP
method takes into account all specified requirements, such as trapezoid count, sliver length, keeping intact slant
edges and CDs, and maximum shot size limitation. However, this algorithm is prohibitively slow for polygons
with large number of vertices, and heuristic partitioning of large polygons may severely degrade the solution
quality.9 As such, Kahng, et al. proposed a fast ray-segment selection heuristics to find a near-optimal fracture
solution.9

The main challenges facing the current fracturing tools include increasing transistor density, smaller feature
sizes, and aggressive use of resolution enhancement techniques (RET). Resolution limit of optical lithographic
systems has forced the electronics industry to rely on RET to compensate and minimize mask distortions as they
are projected onto semiconductor wafers.1, 10 Optical proximity correction (OPC) is a RET that modifies the
mask by adding sub-resolution assist features (SRAF) to the mask pattern such that the output pattern is as close
to the desired pattern as possible.10 These SRAFs introduce numerous additional vertices and corresponding
edges, thus dramatically increasing the trapezoid count and total external sliver length in the resulting fractured
pattern. In this paper, we propose a cost-driven fracturing heuristics to simultaneously reduce the trapezoid
count and the total external sliver length. In our proposed approach, the resulting trapezoid count may reach
the theoretical lower bound described by Kahng et al.9 In addition, rectangle combination technique (RCT)
is introduced to search, find, and move the external slivers from the polygon boundaries to its centers. The
proposed algorithm effectively distinguishes between the harmful external slivers and harmless embedded slivers.

The remainder of this paper is organized as follows. The fracturing problem is formulated in Section 2.
The cost-driven fracture heuristics based on rectangle combination is described in Section 3. Simulations are
included in Section 4, where the effects of the proposed algorithm on mask fracturing are shown. Conclusions
are in Section 5.

2. FRACTURING PROBLEM FORMULATION

Current VSB mask writing machines fabricate masks by sequential exposure of the basic trapezoid obtained from
the fracturing step. The requirements of the fracture pattern can be summarized as follows:7, 8

(1) Mask pattern must be fractured into a set of trapezoids without overlap. Overlapping regions on the
mask are overexposed and scatter more electrons to the periphery, leading to variation of the desired trapezoid
dimension.

(2) External slivers result in distortion of the prescribed trapezoid geometries; thus, total external sliver
length should preferably be minimized.

(3) In order to reduce shot count and cost of mask writing, the number of trapezoids in the resulting fracture
pattern should preferably be minimized.

Proc. of SPIE Vol. 7973 79732O-2

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

(4) In VSB mask writing machine, slant edges are harder to control than axis-parallel edges. Thus, partition
of the slant edges is prohibited.

(5) Regions including elements with critical dimension (CD) should be preserved in one shot without being
split. An example of this is a transistor gate, where higher fabrication accuracy is required. When a CD
region is separated and exposed by different shots, CD uniformity is degraded. For example, in Fig. 1(c), the
middle rectangle is a CD region without any splits, and hence the fabrication accuracy is preserved. However,
in Figs. 1(a) and 1(b), the CD region is separated into several rectangles, which is undesirable.

(6) The maximum linear size of each shot produced by current VSB mask writing machine is between 2𝜇𝑚
and 3𝜇𝑚 on the mask scale. Thus, the linear size of each trapezoid on the fracture pattern should be restricted
to this limit.

In this paper, we only consider decomposition of the rectilinear polygons with axis-parallel edges into disjoint
rectangles. Thus, requirements (1) and (4) are inherently satisfied, with all trapezoids in the fracture pattern
being rectangular. In addition, the heuristics described in next section is applied to simultaneously reduce the
trapezoid count and the total external sliver length. Thus, requirements (2) and (3) are the foci of our algorithm.
Requirements (5) and (6) and mask patterns with 45-degree slant edges are part of our future work.

3. PROPOSED METHOD

Let 𝑃 be the mask pattern, and 𝐹 be the fracture pattern. The mask fracturing problem is to find an optimal
fracture pattern 𝐹 , satisfying

𝐹 (𝑃) = argmin
𝐹∈𝒞

{#(trapezoid) + 𝛾𝐿(external sliver)}, (1)

where 𝒞 is the set of all fracture patterns, #(trapezoid) is the number of trapezoid shots, 𝐿(external sliver) is
the total length of external slivers, and 𝛾 is the weight coefficient for total length of external slivers.

A mask pattern with only horizontal and vertical edges can be represented by a set of rectilinear polygons. For
convenience, we use the term polygon to mean rectilinear polygon in the remainder of this paper. Our proposed
cost-driven fracture heuristics applies three steps to each polygon on the mask. In the first step, an ILP method
is applied to choose the maximum independent set of the chords to divide the polygon into several sub-polygons,
subject to the condition that the external sliver length induced by these chords is minimized. In the second
step, each sub-polygon is decomposed into elemental rectangles by all potential ray-segments emanating from
all concave vertices. Rectangle combination technique is then applied to search and move the external slivers
from the polygon boundaries to its centers. In the third step, a clean-up process is introduced to remove the
redundant ray-segments, and to preserve the convexity constraints for the internal nodes in the fracture pattern.
These three steps are iterated until there are no more rectangles to be combined. Next, we describe the above
three steps in detail.

3.1. Choosing the Maximum Independent Set of Chords

We start by decomposing a given a polygon 𝑃 into smaller rectangles by a set of internal rays. The introduction
of internal rays increases the trapezoid count. In order to form a set of non-overlapping trapezoids, it has been
shown that a polygon should be fractured by the rays emitted from its concave corners.9 To minimize the number
of trapezoids, exactly one ray should be sent from each concave corner.9 Assuming there are 𝑁 concave corners
in 𝑃 , then 𝑁 rays need to be generated. However, two rays may coincide if they share the same two concave
vertices; this is defined as a chord.

Fig. 2(a) shows an example of a polygon and its four chords. As seen, B, D, G, H, O, S, V, W, and Z are the
concave corners, and 𝑍𝑊 , 𝐵𝐺, 𝐷𝑆, and 𝑆𝑂 are the chords. Choosing a chord effectively removes two concave
vertices from the set of concave corners in a polygon, while the ray connected to only one concave vertex removes
only one concave vertex. Thus, if we choose M chords in the fracture pattern 𝐹 , and if the fracture pattern
satisfies the convexity constraints to be described shortly, then the total trapezoid count becomes

#(trapezoid) = 𝑁 −𝑀 + 1. (2)

Proc. of SPIE Vol. 7973 79732O-3

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

External
sliver

A B

C D

E F

G
H

J

KO

QR

ST

U V

WX

Y Z

I

Linear
programming

method(a)

(c)

(b)

Maximum
matching method

A B

C D

E F

G
H

J

KO

QR

ST

U V

WX

Y Z

I

A B

C D

E F

G
H

J

KO

QR

ST

U V

WX

Y Z

I

Figure 2. Linear programming method to choose chords; (a) a polygon and four chords shown by dashed lines; (b) chords
chosen by the maximum matching method; (c) chords chosen by the linear programming method.

Proc. of SPIE Vol. 7973 79732O-4

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

B

(a)

Internal node

Case I

Case II

Case III

(b) (c)

CrossA

C

ED

Figure 3. Connection configurations of the internal node; (a) an example of an internal node; (b) three kinds of permitted
connection configurations; (c) cross connection.

For a given 𝑀 , Eqn. (2) is the theoretical lower bound of the total trapezoid count.9 It implies that we should
choose as many chords as possible to reduce the trapezoid count.11 We refer to intersecting chords as the
“conflicting chords”, e.g., 𝐵𝐺 and 𝐷𝑆 or 𝐷𝑆 and 𝑆𝑂. According to the convexity constraints introduced by
Kahng, et al.,8 among the four edges incident to the intersection of two rays called internal node, there could
be zero fracture edges, two fracture edges along the same ray, or three fracture edges forming a T-shape. These
are illustrated in Fig. 3(b). Clearly, conflicting chords introduce a cross shape as shown in Fig. 3(c), which is
prohibited by the convexity constraints. Thus, conflicting chords cannot both be chosen in the final fracture
pattern 𝐹 . Kahng, et al. represented the relationship among the chords by a bipartite graph as illustrated in
Fig. 4(a). As seen, the nodes in left and right columns indicate the horizontal and vertical chords, respectively.
There is a connection between conflicting chords. The chord choosing problem is to select as many non-conflicting
chords as possible; it corresponds to seeking the maximum independent set in the bipartite graph, which can be
solved by maximum matching algorithm in polynomial time.8 Maximum independent set means the maximum
set of chords without any conflicting chords. Assume there are 𝑀 ′ nodes corresponding to 𝑀 ′ chords in the
bipartite graph. Let 𝛼𝑚 be the indicator of the nodes in the bipartite graph, such that

𝛼𝑚 =

{
1 if the 𝑚th chord is chosen
0 elsewhere

, (3)

where 𝑚 = 1, . . . ,𝑀 ′. 𝛽𝑖,𝑗 is the indicator of the edges in the bipartite graph, such that

𝛽𝑖,𝑗 =

{
1 if the 𝑖th and 𝑗th chords are conflicting
0 elsewhere

, (4)

where 𝑖, 𝑗 = 1, . . . ,𝑀 ′. The chord choosing problem defined by Kahng, et al. is formulated as8

max{
𝑀 ′∑
𝑚=1

𝛼𝑚}, s.t., 𝛼𝑖 + 𝛼𝑗 ≤ 1, if 𝛽𝑖,𝑗 = 1. (5)

The solution to the maximum matching algorithm is shown in Fig. 4(b), and the corresponding fracture pattern
is shown in Fig. 2(b).

The bipartite graph and the maximum matching method do not take into account the external slivers induced
by the chords. Thus, this approach selects the chord 𝑍𝑊 in Fig. 2(b), which increases the total external sliver
length in the final fracture pattern. In order to overcome this limitation, we modify the chord choosing problem
so as to choose as many non-conflicting chords as possible, subject to minimizing the induced external sliver
length. Specifically, we apply the weighed bipartite graph to represent the relationship among chords and the
potential induced external slivers as shown in Fig. 5(a).

Proc. of SPIE Vol. 7973 79732O-5

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

BG

SO

ZW

DS

(a)

BG

SO

ZW

(b)

Maximum matching
method

Figure 4. Maximum matching method to choose chords; (a) bipartite graph representing the relationship among chords;
(b) chords chosen by the maximum matching method.

w(BG) =|CB|

(a)

BG

SO

(b)

Linear programming
method

w(SO) =|SR|

w(ZW) = -1

w(DS) =|CD|

Figure 5. Linear programming method to choose chords; (a) weighed bipartite graph representing the relationship among
chords and the potential induced external slivers; (b) chords chosen by the linear programming method.

In Fig. 5(a), we assign a weight 𝑤(⋅) to each chord. For the chords inducing external sliver, such as 𝑍𝑊 ,
𝑤(𝑍𝑊) = −1. For the chords not inducing external sliver, 𝑤 is the distance from the chord to the nearest parallel
boundary of the polygon in units of nanometers. Thus, 𝑤(𝐵𝐺) = ∣𝐶𝐵∣, 𝑤(𝑆𝑂) = ∣𝑆𝑅∣, and 𝑤(𝐷𝑆) = ∣𝐶𝐷∣,
where ∣ ⋅ ∣ denotes the length of the argument. In other words, the weights are set, such that chosen chords do
not induce sliver and are as far from the boundaries as possible. The ILP problem to choose the chords can be
formulated as

max{
𝑀 ′∑
𝑚=1

𝑤(𝑚)𝛼𝑚}, s.t., 𝛼𝑖 + 𝛼𝑗 ≤ 1, if 𝛽𝑖,𝑗 = 1. (6)

Compared with Eqn. (5), the modified chord choosing method uses the weight coefficients to suppress the induced
external sliver length. The solution to the above ILP problem in Eqn. (6) for the bipartite graph in Fig. 5(a) is
shown in Fig. 5(b), and the corresponding fracture pattern is shown in Fig. 2(c). Using the selected chords, we can
divide the entire polygon into several independent child-polygons, such as: B-C-D-E-F-G, A-B-G-H-I-J-K-O-Q-
R-S-T-U-V-W-X-Y-Z, and S-O-Q-R. The original polygon A-B-C-D-E-F-G-H-I-J-K-O-Q-R-S-T-U-V-W-X-Y-Z
is referred to as parent-polygon. In the next step, the rectangle combination technique (RCT) is applied to
fracture each of these child-polygons, while suppressing the external sliver length.

3.2. Rectangle Combination Technique (RCT)

The definitions used in this section are summarized in Table 1. Given a child-polygon 𝑃𝑐, we first emit both
possible rays from each concave corner, and grid 𝑃𝑐 into elemental rectangles, forming the initial grid pattern.
These emanating rays are called grid lines. In Fig. 6, the child-polygon A-B-G-H-I-J-K-O-Q-R-S-T-U-V-W-X-
Y-Z is an example of the initial grid pattern of 𝑃𝑐, and Z, H, V and W are the concave corners. We send 𝑍𝐸1

and 𝑍𝑊 from Z, 𝐻𝐸1 and 𝐻𝐸5 from H, 𝑉 𝐸4 and 𝑉 𝐸6 from V, and 𝑊𝑍 and 𝑊𝐸3 from W. A, I, J, K, T, U,
X and Y are convex corners, 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, and 𝐸6 are line ends, 𝐼1, 𝐼2, and 𝐼3 are the internal nodes, and
B, G, S, and O are the concave vertices in the parent-polygon. A ray is a line starting and ending on polygon
boundary, such as 𝑍𝑊 and 𝑍𝐸2. A segment is a portion of a ray, starting and ending on polygon boundary or
internal nodes, such as 𝑍𝐼1 and 𝐼1𝐼2. So far, the child-polygon is divided into 11 elemental rectangles. The main
idea behind RCT is to delete the intermediate segment between two adjacent rectangles, thus merging them.

Proc. of SPIE Vol. 7973 79732O-6

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

External
segment

Internal
segment

A
H

J

KT

U V

WX

Y Z

I Grid row 1 (R1)
Grid row 2 (R2)

Grid row 3 (R3)

Grid row 4 (R4)

Grid row 5 (R5)

Grid row 6 (R6)

E1

E2

E3

E4

E5E6

Grid
 column 1

(C1)

Grid
 column 2

(C2)

Grid
 column 3

(C3)

Grid
 column 4

(C4)

I1

I2

I3

B G

OS

Figure 6. The initial grid pattern of 𝑃𝑐.

For example, if we delete the segment 𝑍𝑊 , then the rectangles Y-Z-W-X and Z-𝐼1-𝐼2-W are merged. The final
fracture pattern 𝐹𝑐 should be a combination of these elemental rectangles in the initial grid pattern.

A grid row or column corresponds to where the grid lines exist. For example, there are 6 grid rows and 4
grid columns in Fig. 6, which are denoted by 𝑅𝑖 and 𝐶𝑖, respectively. Any two grid rows or columns compose
a grid-pair, such as (𝑅1, 𝑅4) and (𝐶1, 𝐶2). The distance of a grid-pair, denoted by 𝑑(⋅, ⋅) is defined as the
distance between the two grid rows or columns composing that pair. For instance, 𝑑(𝑅1, 𝑅4) = ∣𝐽𝐸3∣ and
𝑑(𝐶1, 𝐶2) = ∣𝑇𝐸6∣. A segment on the grid line is referred to as external segment, if it overlaps with the boundary
of the parent-polygon, e.g., 𝑊𝑉 . Otherwise, the segment is called internal segment, e.g., 𝑍𝑊 and 𝑆𝑂. Although
𝑆𝑂 is on the boundary of the child-polygon, it is inside the parent-polygon. Thus, 𝑆𝑂 is an internal segment. If
an external segment is parallel to an internal segment in a grid-pair, it is called a coupled external segment with
respect to this grid-pair. For example, 𝑌 𝑋 is a coupled external segment with respect to (𝐶1, 𝐶2). However, 𝐼𝐻
is not coupled with any grid-pair, because its parallel segment 𝐽𝐸1 is an external segment, not an internal one.
Based on the above definitions, we can describe the RCT step as follows:

Step 1: Distance calculation : the distance of all grid-pairs are calculated.

The goal of RCT is to eliminate an external sliver by merging it with its neighboring rectangles inside the
child-polygon. First, we need to find the location of slivers. To do so, we calculate the distance for all grid-pairs.
If the distance is smaller than the sliver threshold 𝜖, we set it to -1. So every grid-pair with distance equal to -1
corresponds to one or more slivers, either embedded or external, depending on whether or not they are located
on the boundary of the parent-polygon. For example, in Fig. 6, the distances for grid pairs (𝑅1, 𝑅2) and (𝐶1, 𝐶2)
are both set to -1, since (𝑅1, 𝑅2) corresponds to external sliver I-J-𝐸1-H, and (𝐶1, 𝐶2) corresponds to external
slivers Y-Z-W-X and U-V-𝐸6-T. In the following steps, the grid-pairs with smaller distances have higher priority
to merge.

Step 2: Choose the grid-pair with the minimum distance : the grid-pair with the minimum distance
and highest external sliver length are chosen.

The grid-pairs are ordered based on the distances calculated in Step 1. The minimum distance value is -1,
corresponding to slivers. Smaller positive distance values correspond to narrower rectangles, while larger positive
distance values correspond to wider rectangles. So, in the second step, we select the grid-pair with the minimum
distance to merge in Step 3. If several grid-pairs have the same minimum distance, then we choose the grid-pair

Proc. of SPIE Vol. 7973 79732O-7

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

Table 1. Summary of definitions.

Terminology Definitions

Grid row/column The row/column corresponding to where the grid lines exist.
Grid-pair The combination of two parallel grid rows/columns.

Distance of grid-pair The distance between the two grid rows/columns composing that pair.
External segment The segment of a grid line overlapping on the boundary of the parent-polygon.
Internal segment The segment of a grid line inside the parent-polygon.

Coupled external segment If an external segment is parallel to an internal segment in a grid-pair, it is
called a coupled external segment with respect to this grid-pair.

Modified segment end The segment end of a deleted segment.
Modified concave corner The modified segment end that locates at a concave corner.
Modified line ends The modified segment end that locates on the boundary of parent-polygon,

and not locates at any concave corner.
Modified internal node The modified segment end locating at a internal node.
Singular segment The segment not emanating from any concave corner.

Singular concave corner The concave corner that does not send any rays.

with the longest total length of coupled external segments, because it results in the longest external sliver length.
For example, in Fig. 6, (𝑅1, 𝑅2) and (𝐶1, 𝐶2) have the same minimum distance of -1. For (𝑅1, 𝑅2), the total
length of coupled external segments is 𝑙1 = ∣𝐼𝐽 ∣. For (𝐶1, 𝐶2), the total length of coupled external segments is
𝑙2 = ∣𝑌 𝑋 ∣+ ∣𝑈𝑇 ∣. Since 𝑙2 > 𝑙1, (𝐶1, 𝐶2) is selected to be processed in the next step.

Step 3: Block merging : the external slivers are merged to their neighboring polygons.

After finding the locations of external slivers, we eliminate them by merging them with their neighboring
rectangles inside the child-polygon. Thus, in this step, we search for the possibility to combine rectangles along
the grid-pair selected in Step 2, and delete the intermediate segment between the rectangles. For example, along
(𝐶1, 𝐶2), we delete the intermediate segment 𝑍𝑊 , thus merging the two associated rectangles into a larger
rectangle Y-𝐼1-𝐼2-X. We also delete 𝑉 𝐸6, and generate a larger rectangle U-𝐼3-𝐸5-T. The segment ends of the
deleted segments, e.g., Z, W, V and 𝐸6, are called modified segment ends, because we change the number of
lines connecting to these ends through the RCT process. During the RCT process, modified segment ends may
include modified concave corners, e.g., Z, W and V, modified line ends, e.g., 𝐸6, and modified internal nodes.
The modified internal nodes are not illustrated in this example. However, if we were to delete segment 𝐻𝐼1, then
𝐼1 would have been a modified internal node.

A B
C

D

Step 3 Step 4

A B

D

Step 5

A B

D

E

(a) (b) (c) (d)

F
G

Figure 7. An example of the RCT process; (a) initial grid pattern; (b) result of Step 3 ; (c) result of Step 4 ; (d) result
of Step 5.

Fig. 7(a) shows an example of the initial grid pattern of a polygon, where the segments with red cross are
deleted in Step 3 resulting in the pattern as shown in Fig. 7(b).

Step 4: Internal node checking : the connection configurations of internal nodes are checked and fixed.

Proc. of SPIE Vol. 7973 79732O-8

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

Fig. 3(a) shows an example of internal node B. In order to reach the minimum trapezoid count during the
rectangle combination process, the connection of an internal node can only have three possibilities as illustrated
in Fig. 3(b).8 In case I, no segment is connected to this internal node; in case II, there is a one-way connection,
and in case III, there is T-shape connection. Fig. 3(c) shows another possible connection of an internal node,
namely a cross. While the cross is allowed in the intermediate steps of the rectangle combination process, it
should be removed after the rectangle combination step is completed, i.e. in the post-processing step described
shortly in Section 3.3. The prohibited connection configurations of internal nodes for the intermediate steps are
shown in Fig. 8, where case I is “dead end”, and case II is L-shape.

Case I Case II

Figure 8. Prohibited connection configurations of internal nodes in the intermediate steps.

In Step 3, we delete some intermediate segments and introduce some modified segment ends, whose connection
configurations are changed. In order to constrain their connection configurations to the four possibilities shown
in Figs. 3(b) and 3(c), we “check” all modified internal nodes after each rectangle combination. By “check” we
mean the following: if there are any internal nodes with connection configuration the same as the two cases listed
in Figs. 8, we remove the incident segments to them and degrade them to case I. For instance, if the segments
𝐴𝐵 and 𝐷𝐵 are deleted in Fig. 3(a), then the modified internal node 𝐵 becomes an L-shape connection; thus,
we delete segments 𝐵𝐶 and 𝐵𝐸 to degrade 𝐵 to case I.

In addition, we delete any segment not emanating from a concave corner, which is referred to as singular
segment; this is because singular segments increase the trapezoid count.7 In Fig. 3(a), if the segment 𝐵𝐶 is
deleted during the rectangle combination, then 𝐴𝐵 becomes a singular segment.

When we delete the incident segments connected to modified internal nodes and singular segments, we may
introduce new modified internal nodes. Thus, we build a list of all of the modified internal nodes to be “checked”.
If new modified internal nodes are generated, they are pushed to the end of the list. Step 4 is terminated when
the list is empty.

In this step, we only check the modified internal nodes. The checking of the modified concave corners, defined
in Step 3, is explained shortly in Step 5. Also we do not need to check the modified line ends, because in the
initial grid pattern, all grid lines emanate from the concave corners. So, if the connection configurations of the
concave corners and internal nodes are determined, the connection configurations of the modified line ends are
also known. Consider the example in Fig. 7(b), where 𝐴𝐵 is a singular segment, and is therefore removed in
Step 4. The absence of 𝐴𝐵 configures the internal node 𝐶 as “dead end”; thus 𝐶𝐷 is removed in Fig. 7(c).

Step 5: Concave corner checking : singular concave corners are found and fixed.

We check all modified concave corners introduced in Steps 3 and 4 to guarantee that at least one ray is sent
from every modified concave corner. The singular concave corner is defined as the one that does not send any
rays. If a singular concave corner is found, we emanate a ray from it until the ray reaches another segment. The
emanated ray should be in the same direction as the last ray deleted from the singular concave corner, because
the ray in this direction is guaranteed not to introduce new modified internal nodes. In other word, we do not
want to disturb the current fracturing pattern, so we trace back in the direction of the last deleted ray from the
singular concave corner. Consider the example in Fig. 7. In Fig. 7(c), the vertex 𝐷 becomes the singular concave
corner, and 𝐶𝐷 is the last ray deleted from it. So, in Step 5, we emanate a ray from D along 𝐶𝐷 as shown in
Fig 7(d). As seen, the ray 𝐷𝐸 is stopped when it reaches another segment 𝐹𝐺.

After Step 5, we return to Step 2 and select the grid-pair with the next minimum distance. This process is
repeated until we have processed all of the grid-pairs, or there are no more rectangles to be combined.

Proc. of SPIE Vol. 7973 79732O-9

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

3.3. Post Processing

As discussed in Sections 3.1 and 3.2, there are three topography constraints for the fracture pattern. First,
exactly one ray should be sent from each concave corner. Second, the connection configuration of any internal
node has to fall into the three cases listed in Fig. 3(b). Finally, any segment not connected to concave corner
should be removed. In Section 3.2, The third topography constraint mentioned above is guaranteed by Step 4.
Step 4 also constrains the connection configurations of internal nodes to the four possibilities shown in Figs. 3(b)
and 3(c). However, after the rectangle combination step, all crosses as shown in Fig. 3(c) should be removed.
In addition, Step 5 guarantees that every concave corner sends at least one ray. So, there may be some concave
corners sending two rays. Based on this analysis, only the third topography constraint is fully satisfied. In this
section, we introduce a post processing step to ensure that the first and second topography constraints are also
satisfied. Specifically, in the post processing step, we check the configurations of all concave corners and internal
nodes in the resulting fracture pattern obtained from the previous RCT stage.

3.3.1. Concave Corner Checking

Step 5 in the rectangle combination guarantees that each concave corner sends at least one ray. Thus, in the post
processing step, we are only concerned about the concave corners sending two rays. In this case, we compare
the external sliver length induced by each ray. Then, we preserve the ray with shorter external sliver length,
and remove the other. The external sliver length induced by a ray is defined as the difference between external
sliver length generated by it and the external sliver length “saved” by preserving it. An example is shown in
Fig. 9. Figure 9(a) shows the fracture pattern, where the dashed lines 𝐶𝐹 , 𝐶𝐺 and 𝐴𝐵 are the grid lines. The

(a)

A
BD

E

G

F

H

C

w<

w<

(b)

A
B

F

C

Concave corner
checking

Figure 9. Concave corner checking; (a) fracture pattern with a concave corner sending two rays; (b) result of the concave
corner checking process.

polygon is divided into four rectangles, with concave corner C sending two rays 𝐶𝐹 and 𝐶𝐺. In order to keep
the topography constraints, one of them must be removed. Since ∣𝐺𝐻 ∣ = ∣𝐸𝐷∣ = 𝑤 < 𝜖, ray 𝐶𝐺 generates an
external sliver with length of 𝑙1 = ∣𝐶𝐺∣. On the other hand, ray 𝐶𝐹 does not generate any external sliver. If 𝐶𝐹
is removed, the segment 𝐴𝐵 is extended to 𝐴𝐷 as illustrated by the red line. Thus, the external sliver length
“saved” by preserving 𝐶𝐹 is ∣𝐵𝐷∣. Therefore, the effective external sliver length induced by 𝐶𝐹 is 𝑙2 = −∣𝐵𝐷∣.
Since 𝑙1 > 𝑙2, we delete 𝐶𝐺 and preserve 𝐶𝐹 . The resulting fracture pattern is shown in Fig. 9(b).

3.3.2. Internal Node Checking

Step 4 in the rectangle combination guarantees that the connection configuration of any internal node belongs to
the four cases listed in Figs. 3(b) and 3(c). As described in Section 3.2, the cross is allowed in the intermediate
steps of rectangle combination process, but is prohibited in the final fracture pattern. Thus, in the post processing
step, we find the internal nodes in a cross configuration, and “fix” them. For the cross configuration, there are
four incident segments to the internal node. Two of them from concave corners must be preserved in the fracture
pattern, otherwise the corresponding ray becomes a singular segment as defined in Step 4 of Section 3.2. Thus,
one of the other two incident segments has to be removed to eliminate the cross configuration. In this case,

Proc. of SPIE Vol. 7973 79732O-10

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

we compare the external sliver length induced by each of the two remaining candidates. The external sliver
length induced by a segment is defined similarly to that of a ray. We choose to preserve the segment with
shorter induced external sliver length, and remove the other one, thus transforming the cross configuration to
the T-shape connection. An example of this is shown in Fig. 10, where the dashed lines are the grid lines.
The polygon is divided into seven rectangles, and the internal node O has a cross connection. Among the four

A

B

C

D

E
O

FG

H

J

K

w1<

w2>

w1<

(a)

A

B

C

O

H

J

(b)

GInternal node
checking

Figure 10. Internal node checking; (a) fracture pattern having a internal node with cross-shape connection; (b) result of
the internal node checking process.

incident segments to O, 𝑂𝐷 and 𝑂𝐸 are not connected to concave corners. In order to keep the topography
constraints, one of them has to be removed. Since ∣𝐶𝐹 ∣ = ∣𝐸𝐽 ∣ = 𝑤1 < 𝜖, segment 𝑂𝐷 generates an external
sliver with length of 𝑙1 = ∣𝐷𝐹 ∣. If 𝑂𝐷 is removed, segment 𝐶𝐹 is extended to 𝐶𝐺 as illustrated by the red line.
However, ∣𝐷𝐹 ∣ = 𝑤2 > 𝜖, thus 𝐹𝐺 is not an external sliver. On the other hand, segment 𝑂𝐸 does not generate
any external slivers. If 𝑂𝐸 is removed, segment 𝐻𝐽 is extended to 𝐻𝐾 as illustrated by the red line. Thus, the
external sliver length “saved” by preserving 𝑂𝐸 is ∣𝐽𝐾∣. Therefore, the effective external sliver length induced
by 𝑂𝐸 is 𝑙2 = −∣𝐽𝐾∣. Since 𝑙1 > 𝑙2, we delete 𝑂𝐷 and preserve 𝑂𝐸; the resulting fracture pattern is shown in
Fig. 10(b).

The three topography constraints mentioned at the beginning of Secion 3.3 are enforced via the post processing
step. After this, the fracture patterns for all of the child-polygon are stitched up to form the fracture pattern
for the parent-polygon. As an example, the final fracture pattern for the parent-polygon in Fig. 2 is shown in
Fig. 11.

4. SIMULATIONS

In this section, we present the simulation results of our proposed fracturing heuristics based on rectangle com-
bination. We compare the trapezoid count, the total external sliver length and the total external sliver count
between the proposed algorithm and CalibreTMfracture package.12 We consider two different sliver thresholds
𝜖 = 10𝑛𝑚 and 𝜖 = 25𝑛𝑚. All of the following simulations are based on the OPC layout of a Poly layer with
critical dimension 𝐶𝐷 = 90𝑛𝑚.

First, we run pixel-based OPC on the Poly layer of a random logic circuit using PIXbarTMsoftware.12 The
prescribed sliver threshold is usually approximately half of the SRAF’s width on the OPC layout. Thus, for the
case of 𝜖 = 10𝑛𝑚, we set the parameter in PIXbarTMspecifying the minimum allowed SRAF width to 20nm.
Then, we select 30 polygons from the OPC layout to test our proposed algorithm. The performance comparison

Proc. of SPIE Vol. 7973 79732O-11

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

A B

C D

E F

G
H

J

KO

QR

ST

U V

WX

Y Z

I

Figure 11. Final fracture pattern for the parent-polygon in Fig. 2.

Table 2. Comparison of trapezoid count, external sliver length, and external sliver count between CalibreTMsoftware and
the proposed algorithm for 𝜖 = 10𝑛𝑚 and 𝜖 = 25𝑛𝑚.

CalibreTMsoftware Proposed algorithm Reduction (%)

Trapezoid count
with 𝜖 = 10𝑛𝑚 867 853 1.61

Total external sliver length
with 𝜖 = 10𝑛𝑚 (nm) 1585 1381 12.87

Total external sliver count
with 𝜖 = 10𝑛𝑚 (nm) 46 35 23.91

Trapezoid count
with 𝜖 = 25𝑛𝑚 572 570 0.35

Total external sliver length
with 𝜖 = 25𝑛𝑚 (nm) 5572 5133 7.88

Total external sliver count
with 𝜖 = 25𝑛𝑚 (nm) 79 79 0

between CalibreTMfracture package and the proposed algorithm for 𝜖 = 10𝑛𝑚 is summarized in 2nd to 4th rows
of Table 2. It is shown that our proposed algorithm reduces the trapezoid count by 1.61%, the total external
sliver length by 12.87%, and the total external sliver count by 23.91%.

For the case of 𝜖 = 25𝑛𝑚, we specify the minimum SRAF width in PIXbarTMto be 50nm. We select 30
polygons from the entire OPC layout. The performance comparison between CalibreTMfracture package and
the proposed algorithm for 𝜖 = 25𝑛𝑚 is summarized in 5th to 7th rows of Table 2. Our proposed algorithm
reduces the trapezoid count by 0.35%, the total external sliver length by 7.88%. However, it generates the same
sliver count as CalibreTM. An example of the performance comparison between the proposed algorithm and
CalibreTMsoftware is illustrated in Fig. 12. Fig. 12(a) shows the fracture solution of the proposed algorithm with
10 trapezoids and 188nm external slivers. Fig. 12(b) shows the fracture solution of CalibreTMwith 10 trapezoids
and 205nm external slivers. Red lines represent the external slivers. The histograms of the trapezoid counts,
external sliver lengths, and external sliver counts for 𝜖 = 10 and 25𝑛𝑚 are shown in Figs. 13(a), 13(b) and 13(c),
respectively. As expected, the histograms for our proposed algorithm are slightly more concentrated towards the

Proc. of SPIE Vol. 7973 79732O-12

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

The proposed algorithm Calibre™

Trapezoid count = 10
External sliver length = 188nm

Trapezoid count = 10
External sliver length = 205nm

(a) (b)

Figure 12. Performance comparison between the proposed algorithm and CalibreTMsoftware with 𝜖 = 25𝑛𝑚; fracture
solution resulting from (a) the proposed algorithm; (b) CalibreTM. Red lines represent the external slivers.

left than that of CalibreTM.

5. CONCLUSION

This paper has developed a cost-driven fracture heuristics for VSB mask writing machine based on rectangle
combination. First, a set of optimal chords are chosen using linear programming to divide the parent-polygon
into several child-polygons. Subsequently, rectangle combination technique is applied to each child-polygon.
Finally, the post processing step modifies the local connection configurations of the concave corners and internal
nodes in the fracture pattern to guarantee the topography constraints. The proposed heuristics can reach the
lower bound of the total trapezoid count, because we emanate exactly one ray from each concave corner, and
constrain the internal nodes to the three possible connection configurations described in Section 3.2. In addition,
our proposed algorithm effectively reduces the total external sliver length, thus improving the efficiency and
accuracy of the mask writing. Simulations illustrate that our heuristics significantly reduces the total external
sliver length of a currently commercially available fracturing tool by 8% to 13%. In the future, we plan to
investigate CD maintenance, maximum shot size, and slant polygon edges.

Proc. of SPIE Vol. 7973 79732O-13

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

Trapezoid count External sliver length

External sliver number

(a) (b)

(c)

0 100 200 300 400 500 600
0

5

10

15

20

25

CalireTM, = 10
Proposed algorithm, = 10

CalireTM, = 25
Proposed algorithm, = 25

0 1 2 3 4 5 6 7
0

5

10

15

20

25

CalireTM, = 10
Proposed algorithm, = 10

CalireTM, = 25
Proposed algorithm, = 25

13 23 33 43 53 63
0

5

10

15

CalireTM, = 10
Proposed algorithm, = 10

CalireTM, = 25
Proposed algorithm, = 25

Figure 13. The histograms of (a) the trapezoid counts; (b) external sliver lengths; (c) external sliver counts.

Proc. of SPIE Vol. 7973 79732O-14

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

REFERENCES

1. X. Ma and G. R. Arce, Computational lithography, Wiley Series in Pure and Applied Optics, John Wiley
and Sons, New York, 1 Ed., 2010.

2. M. Bloecker, R. Gladhill, P. D. Buck, M. Kempf, D. Aguilar, and R. B. Cinque, “Metrics to assess fracture
quality for variable shaped beam lithography,” in Photomask Technology. Proceedings of the SPIE, 6349,
pp. 63490Z, 2006.

3. Y. Zhang, R. Gray, S. Chou, B. Rockwell, G. Xiao, H. Kamberian, R. Cottle, A. Wolleben, and C. Progler,
“Mask cost analysis via write time estimation,” in Design and Process Integration for Microelectronic Man-
ufacturing III, Proceedings of the SPIE, 5756, pp. 313–318, 2005.

4. K. Moriizumi, H. Taoka, K. Ueyama, H. Morimoto, and T. Munakata, “High-quality drawing data prepara-
tion for variable-shape EB drawing systems (I)– fracturing algorithm,” in Proc. 55th Aut. Conv. Soc. Appl.
Phys., pp. 565, 1994.

5. T. Ohtsuki, M. Sato, M. Tachibana and S. Torii, “Minimum fracturing of composite rectangular region,”
Trans. Inf. Process 24, pp. 647–653, 1983.

6. T. Asano, T. Asano, and H. Imai, “Partitioning a polygonal region into trapezoids,” J. Assoc. Comput.
Mach. 33, pp. 291–312, 1986.

7. H. Nakao, M. Terai, and K. Moriizumi, “A new figure fracturing algorithm for variable-shaped EB exposure-
data generation,” Electronics and Communication in Japan, Part 3 83, pp. 87–102, 2000.

8. A. B. Kahng, X. Xu, and A. Zelikovsky, “Yield- and cost- driven fracturing for variable shaped-beam
mask writing,” in Proc. 24th BACUS Symposium on Photomask Technology and Management, pp. 360–371,
Sep. 2004.

9. A. B. Kahng, X. Xu, and A. Zelikovsky, “Fast yield-driven fracture for variable shaped-beam mask writ-
ing,” in Photomask and Next-Generation Lithography Mask Technology XI, Proceedings of the SPIE 6283,
pp. 62832R, Apr. 2006.

10. A. K. Wong, Resolution enhancement techniques, vol. 1, SPIE Press, 2001.

11. T. Ohtsuki, “Minimum dissection of rectilinear regions,” in Proc. ISCS, pp. 1210–1213, 1982.

12. http://www.mentor.com/.

Proc. of SPIE Vol. 7973 79732O-15

Downloaded from SPIE Digital Library on 30 Mar 2011 to 128.32.43.64. Terms of Use: http://spiedl.org/terms

