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ABSTRACT 
 
Current LiDAR classification methods are excessively slow 
to be used in real–time navigation systems, even though 
they are useful for human perception. These methods 
typically analyze curvature by applying Principal 
Component Analysis (PCA) to each point in a point cloud. 
For variable–density aerial LiDAR obtained by at a shallow 
angle with respect to the ground rather than in a top–down 
fashion, the variations in density pose special challenges in 
terms of choosing the appropriate PCA parameters. In this 
paper we use gridded approximate nearest neighbor searches 
for fast classification of geometric features in large LiDAR 
point clouds. The underlying algorithm exploits spatial 
hashes and the forgiving nature of PCA as a part of 
geometric classification. We show a factor of 10-20 speed 
up for both actual and simulated point clouds with little or 
no loss in classification performance. Our approach is 
applicable to both uniform and variable–density aerial 
LiDAR datasets. 
 

Index Terms—Aerial LiDAR, LiDAR Segmentation, 
3D LiDAR Classification, PCA, Curvature Analysis 
 

1. INTRODUCTION 
 
Historically, LiDAR systems have been used to provide 
important navigational information. Aerial LiDAR range 
scanning can help pilots avoid collisions and identify salient 
terrain features, e.g. water for emergency landings or 
relatively flat areas for landing zones by generating a point 
cloud. The challenge with visualizing point clouds of raw 
LiDAR returns is that while they provide spatial cues to 3D 
structures, they often discard or add noise to other visual 
cues that humans normally use to differentiate objects.  

Carlberg et al. addressed this problem for urban 
landscapes by applying 3D shape analysis to the raw point 
cloud [1]. More specifically, they label each point in a point 
cloud sequentially by curvature analysis via Principal 
Component Analysis (PCA). This results in a set of 
eigenvectors corresponding to the principal directions of the 
points, and a set of eigenvalues corresponding to their size 
and shape. With this information, it is possible to infer 
whether the region is planar or scatter, and use that to 
classify the point as an urban feature, e.g. a building, 
vegetation, or ground, as showcased in Figure 1. 

One problem with the approach in [1] is that it is 
tailored to constant–density LiDAR scans, typical of 
overhead aerial mapping of a region. The terrain map point 
cloud is typically represented in 2.5D, with many more 
LiDAR returns concentrated in the planes parallel to the 
ground plane than those perpendicular to the horizon. These 
scans have a similar point density in most terrain features of 
similar materials because almost all of the features are of 
equal distance to the sensor. However, returns from aerial 
navigational LiDAR systems are different in that they are 
typically aimed at an angle towards the ground. Thus, the 
resulting point clouds can have highly variable densities: 
features that are close to the sensor typically result in many 
more returns than those that are far away. 

PCA requires enough representative points of a 
terrain feature to result in a meaningful set of eigenvalues 
for feature analysis. This is especially true of LiDAR returns 
because the scanners incur natural noise and as such, a 
certain number of points are needed to overcome the noise. 
This can create a problem with the classifier in [1] because 
it is designed to only deal with static densities. By 
restricting the radius of points collected for PCA to be of 
constant size throughout a point cloud, it is necessary to set 
the PCA radius to a large enough value to encompass 
enough points for features with the lowest density. A large 
PCA radius can, however, lead to another problem: in high–
density areas, it is necessary to run PCA on many more 

Figure 1 An example of the output from a pointwise PCA 
classifier performed on real LiDAR data. 



 

points than needed, which can slow processing to a crawl. 
A natural extension to the method in [1] is to start 

with a small radius and only increase it whenever there are 
not enough points for PCA. Even though we have 
empirically shown this to dramatically improve performance 
when dealing with variable–density point clouds, it is still 
excessively slow.  

For a real time aerial LiDAR system, a much faster 
approach than [1] is required. The scheme must also be 
robust enough to deal with the density variations that result 
from aerial LiDAR scans at an angle, while still be tunable 
for speed and precision. The major issue is that Fixed 
Radius Near Neighbors (FRNN) is not the exact problem we 
need to solve for 3D shape analysis when dealing with 
variable–density point cloud data. This is because the 
numbers of points that can be considered close enough to 
correspond to the same geometric feature can fluctuate 
significantly.  
 In this paper, we propose a two-pronged approach 
on a uniform 3D grid to address this issue. Our goal is to 
achieve similar classification accuracy to [1] on multiple 
datasets of varying densities while being an order of 
magnitude faster for most LiDAR data. The outline of the 
paper is as follows: Section 2 is an overview of existing 
methods; in Section 3, we describe our proposed approach. 
Section 4 includes experimental results and conclusions are 
in Section 5. 
 

2. OVERVIEW OF EXISTING METHODS 
 

2.1. The Extended Carlberg Method 
 
The Extended Carlberg Method (ECM) is the algorithm in 
[1] designed to solve the problem of point-wise fixed-radius 
PCA with the enhancement of increasing the radius when 
there are not enough points for PCA. There are four steps to 
this approach: (1) Gridding: The point cloud is first hashed 
into a 2-dimensional x-y grid with an arbitrary grid 
granularity to speed up nearest neighbor searches. (2) FRNN 
Searches: The searches are performed pointwise on the 2D 
grid. For each point to be classified, additional points are 
found in enough grid cells to encompass the minimum PCA 
radius defined by the dataset and added to a list of points for 
PCA. (3) Radius Growing: If the number of points collected 
in the cells is below the minimum threshold set for PCA, the 
radius is increased and more cells are added to the search 
list until either the number of points is sufficient for PCA or 
the radius reaches a maximum parameter set by the user. (4) 
PCA: The eigenpairs are found by general eigenvalue 
decomposition on the covariance matrix. 
 
2.2. The General 3D Gridding Algorithm 
 
The general gridding algorithm is designed to solve the 
problem of K Nearest Neighbor (KNN) with a 3D grid [2]. 
It consists of two steps: (1) Gridding: The point cloud is 

hashed into a 3D grid. (2) Nearest Neighbor Searches: For 
each point to be searched (the reference point) the point is 
hashed again and a starting cell is found. From there the 
search region is expanded by adding adjacent cells to the 
search region. After a minimum of k points are added, the 
search area is increased by a preset number of layers of cells 
for more accuracy. Finally, after the potential nearest 
neighbor points list is complete, the k nearest neighbors are 
returned by computing the kth

 farthest point from the 
reference point, and returning all points that are closer than 
that. 
 

3. PROPOSED METHOD 
 
Our proposed method takes the general 3D grid–based 
FRNN scheme and modifies it to approximate PCA. We 
propose to use a FRNN search for high–density areas so as 
to encompass the entire geometric feature, while using a 
typical ANN search for low–density areas so as to obtain 
enough points to perform PCA on.  

We start with the same gridding approach described in 
Section 2.2. However, when we do an initial search of the 
minimum radius, we make a decision based on how many 
points we find. If we have more points than we require for 
PCA, we simply cull off all the points above a certain 
distance to the original reference point. This approximates a 
FRNN search for high–density areas. If there are insufficient 
points after the distance culling, we then expand the search 
radius until we find enough points in the grid to meet the 
minimum number of points required for PCA. This is 
effectively an ANN search for low-density areas. 

In [1], the PCA radius must be large enough to 
encompass enough points to overcome the noise in the 
LiDAR scanner for all relevant terrain features. The 
problem with that method is that in point clouds with large 
variations in density, the PCA radius required is much larger 
than is necessary for the higher–density regions. 

With our hybrid method, the PCA radius automatically 
expands to include relevant points in areas of low density, 
where the scanner noise is most apparent. This provides a 
reasonable classification approximation of the method in 
[1], while resulting in a better run time as well as some 
parallel scalability [4]. There are 4 major parts to the 
algorithm: grid construction, range search, distance culling, 
and principal component analysis (PCA), which are 
described below. 

 
3.1. Parameters 
 
Grid granularity: Grid granularity is the length of each 
voxel on the grid. A lower granularity can increase PCA 
times because excess points are considered for range 
culling. However, a very high granularity increases the time 
required for range searches and grid construction. This 
parameter should be set to a value close to the PCA radius. 
 



 

 Minimum PCA radius: This is the minimum radius around 
each point to be considered in performing PCA. This 
parameter varies with the density of the point cloud. A 
larger radius is more accurate in classifying dense noisy 
LiDAR captures, but it also slows down the classification 
algorithm because more points are considered on average. 
 
Minimum Points for PCA: This is the minimum number of 
points that the range search must find in order to perform 
PCA. This parameter only becomes important if the density 
of the point cloud varies significantly between regions. 
 
Maximum Points for PCA: This is the maximum number of 
points the PCA classifier considers per point. For portions of 
point clouds that are dense, it is desirable to limit the 
number of points considered. A higher value here results in 
more accuracy, but also increases runtime. Generally, this 
parameter is directly proportional to the density of the point 
cloud. 
 
3.2. Details of the Algorithm 
 
Grid construction: Before actually querying points, we 
need to construct a data structure in memory that organizes 
the points in a spatially coherent manner. We use a spatial 
hash function similar to [3] in order to organize the points 
into a voxel grid.  
Range Search: We do the range search the same way as the 
approach described in Section 2.2. During the range search, 
we keep track of all non-empty cells within the radius of the 
search. For each point, we search the cell that contains the 
point and the cells around it until we find enough points 
required for PCA. 
Distance Culling: If the number of points needed for PCA 
is exceeded, we cull off all the points that are farther than 
the PCA radius. This simulates a FRNN search for areas 
with a high point– density. However, if after culling the 
points, there are fewer than the minimum points required for 
PCA, we simply use all available points to simulate an ANN 
search. In this case, the density around the specific point 
must be low. Low–density areas in the point cloud require a 
less exact body of points to represent the geometric features 
in the area; the only requirement becomes to have a 
collection of points that encompasses a wide enough area to 
characterize the feature. We take advantage of these two 
properties and use the points we have found already in the 
initial range search when encountering low density areas. 
This provides resilience towards datasets with variable 
density. 
Curvature Analysis via PCA: In this step, we first 
compute the 3×3 symmetric covariance matrixes of the 
points and then perform singular value decomposition on 
this matrix by using the QR algorithm [4]. After PCA, we 
are left with 3 eigenpairs. The geometric classifications are 

then decided the same way as [1]: (a) Planar, if λ1 ≈ λ2 >> 
λ3, (b) Scatter if λ1 ≈ λ2 ≈ λ3, (c) Linear if λ1 >> λ2 ≈ λ3, (d) 
Ground if λ1 ≈ λ2 >> λ3 and the normal vector’s z value is 
above a certain threshold, (e) Other if all other tests fail. 
 

4. EXPERIMENTAL RESULTS 
 

Our proposed classifier is tested on various real and 
synthetic datasets. These point clouds include 3 datasets 
from a real LiDAR capture with generally uniform point 
density, 3 aerial LiDAR simulations with variable density, 
and 14 synthetic uniform random point clouds.  

The accuracy results are obtained by assuming 
results from [1] to be the ground truth. The tests are run on a 
PC running Windows XP with an Intel Xeon X5355 CPU at 
2.66 GHz and 4 GB of RAM. The results are shown in 
Tables 1 and 2.  
 

Dataset Time Points ECM 
Time 

Speed 
up 

Accuracy 

Real1 7.9s 492989 138.3s 17.46 95.97% 

Real2 9.0s 596996 177.0s 19.77 95.87% 

Real3 9.4s 637573 209.2s 22.06 95.80% 

Table 1 Runtimes, speed-up rates, and accuracy data for 
constant–density aerial LiDAR returns. Minimum 
(maximum) number of points for PCA is 15 (200). Grid 
length is 0.5. 

Dataset Time Points ECM 
Time 

Speed 
up 

Accuracy 

Aerial1 55.0s 3762830 814s 14.80 99.21% 

Aerial2 119.4s 7226259 1652s 13.84 99.40% 

Aerial3 14.8s 704162 200s 13.54 97.63% 

Table 2 Runtimes, speed-up rates, and accuracy data for 
variable–density synthetic aerial LiDAR. Minimum 
(maximum) number of points for PCA is 15 (1000).  Grid 
length is 0.5. 

 

Figure 2 Percent error for the Real 2 dataset for various 
PCA radii as a function of maximum PCA points. 
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As shown in Tables 1 and 2, our proposed method is faster 
than [1] by about a factor of 20 and 14 for real and synthetic 
data respectively. Moreover, it is able to reach a high degree 
of fidelity as compared to the original ground truth method 
in [1] given a proper PCA radius. In addition to the data 
confirmation, the results are visually indistinguishable as 
well. There is a considerable amount of tolerance to the 
maximum PCA points as shown in Figures 2 and 3. In 
contrast, there seems to be a lack of tolerance to the PCA 
radius. In practice however, we have found that the 
optimum PCA radius for our scheme is proportional to that 
used for generating the ground truth via ECM, and as such, 
is not scene–dependent. 

We run the synthetic datasets with fixed PCA radii 
and grid granularity, but variable data size as shown in 
Figure 4. Since the overall dimensions are constant, the 
density rises with more points. As shown in Figure 4, our 
proposed method shows a linear relationship between the 
number of points and runtimes while the ECM rapidly 
degrades in speed. 
 The speed up factor of our algorithm on LiDAR 
data varies between 13.5 to 22 times. Our method performs 
just as well, if not better on the uniform–density datasets as 
the variable–density ones. One reason might be that the real 
dataset has higher point density for each terrain feature than 
the synthetic aerial LiDAR data, and the improvements of 
our proposed method allow us to use a smaller PCA radius 
than in [1]. 
 Qiu et al. also use point-wise PCA on a point cloud 
for 3D registration [5]. The difference is that they only use a 
KNN of 50 points to do PCA. Also, they use a kd-tree rather 
than a grid. It is interesting to note that their sequential CPU 
processing times for a 68k point dataset are actually slower 
than our times for a 704k point dataset; i.e. approximately 
27 seconds versus our 14 seconds. Furthermore, the average 
number of points used in our case is considerably larger. 
Note that 50 nearest points used in [5] are too few to result 
in sufficient classification accuracy for a variable–density 

point cloud. While the approaches are different, this shows 
that our method is competitive in regards to more complex 
data structures. 

5. CONCLUSIONS 
 

Our proposed algorithm is considerably faster than the 
existing approaches while providing high fidelity to the 
results obtained from the ECM. In addition, it seems to scale 
well with point density. The approach in [1] on the other 
hand degrades rapidly when both density and points are 
increased. Future work involves improving tolerance to 
parameters and multicore or GPU implementations. 
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Figure 4 Synthetic benchmark tests on various numbers of 
points. There are two sets of results with the proposed 
method: one with a grid granularity of 0.005, and one with a 
grid size of 0.01. 
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Figure 3 Percent error for variable–density synthetic aerial
dataset 2 for various PCA radii as a function of maximum
PCA points. 


