

FAST APPROXIMATION FOR GEOMETRIC CLASSIFICATION OF LIDAR RETURNS

Xiaozhe Shi and Avideh Zakhor

Department of Electrical Engineering and Computer Science, University of California, Berkeley

ABSTRACT

Current LiDAR classification methods are excessively slow
to be used in real–time navigation systems, even though
they are useful for human perception. These methods
typically analyze curvature by applying Principal
Component Analysis (PCA) to each point in a point cloud.
For variable–density aerial LiDAR obtained by at a shallow
angle with respect to the ground rather than in a top–down
fashion, the variations in density pose special challenges in
terms of choosing the appropriate PCA parameters. In this
paper we use gridded approximate nearest neighbor searches
for fast classification of geometric features in large LiDAR
point clouds. The underlying algorithm exploits spatial
hashes and the forgiving nature of PCA as a part of
geometric classification. We show a factor of 10-20 speed
up for both actual and simulated point clouds with little or
no loss in classification performance. Our approach is
applicable to both uniform and variable–density aerial
LiDAR datasets.

Index Terms—Aerial LiDAR, LiDAR Segmentation,
3D LiDAR Classification, PCA, Curvature Analysis

1. INTRODUCTION

Historically, LiDAR systems have been used to provide
important navigational information. Aerial LiDAR range
scanning can help pilots avoid collisions and identify salient
terrain features, e.g. water for emergency landings or
relatively flat areas for landing zones by generating a point
cloud. The challenge with visualizing point clouds of raw
LiDAR returns is that while they provide spatial cues to 3D
structures, they often discard or add noise to other visual
cues that humans normally use to differentiate objects.

Carlberg et al. addressed this problem for urban
landscapes by applying 3D shape analysis to the raw point
cloud [1]. More specifically, they label each point in a point
cloud sequentially by curvature analysis via Principal
Component Analysis (PCA). This results in a set of
eigenvectors corresponding to the principal directions of the
points, and a set of eigenvalues corresponding to their size
and shape. With this information, it is possible to infer
whether the region is planar or scatter, and use that to
classify the point as an urban feature, e.g. a building,
vegetation, or ground, as showcased in Figure 1.

One problem with the approach in [1] is that it is
tailored to constant–density LiDAR scans, typical of
overhead aerial mapping of a region. The terrain map point
cloud is typically represented in 2.5D, with many more
LiDAR returns concentrated in the planes parallel to the
ground plane than those perpendicular to the horizon. These
scans have a similar point density in most terrain features of
similar materials because almost all of the features are of
equal distance to the sensor. However, returns from aerial
navigational LiDAR systems are different in that they are
typically aimed at an angle towards the ground. Thus, the
resulting point clouds can have highly variable densities:
features that are close to the sensor typically result in many
more returns than those that are far away.

PCA requires enough representative points of a
terrain feature to result in a meaningful set of eigenvalues
for feature analysis. This is especially true of LiDAR returns
because the scanners incur natural noise and as such, a
certain number of points are needed to overcome the noise.
This can create a problem with the classifier in [1] because
it is designed to only deal with static densities. By
restricting the radius of points collected for PCA to be of
constant size throughout a point cloud, it is necessary to set
the PCA radius to a large enough value to encompass
enough points for features with the lowest density. A large
PCA radius can, however, lead to another problem: in high–
density areas, it is necessary to run PCA on many more

Figure 1 An example of the output from a pointwise PCA
classifier performed on real LiDAR data.

points than needed, which can slow processing to a crawl.
A natural extension to the method in [1] is to start

with a small radius and only increase it whenever there are
not enough points for PCA. Even though we have
empirically shown this to dramatically improve performance
when dealing with variable–density point clouds, it is still
excessively slow.

For a real time aerial LiDAR system, a much faster
approach than [1] is required. The scheme must also be
robust enough to deal with the density variations that result
from aerial LiDAR scans at an angle, while still be tunable
for speed and precision. The major issue is that Fixed
Radius Near Neighbors (FRNN) is not the exact problem we
need to solve for 3D shape analysis when dealing with
variable–density point cloud data. This is because the
numbers of points that can be considered close enough to
correspond to the same geometric feature can fluctuate
significantly.
 In this paper, we propose a two-pronged approach
on a uniform 3D grid to address this issue. Our goal is to
achieve similar classification accuracy to [1] on multiple
datasets of varying densities while being an order of
magnitude faster for most LiDAR data. The outline of the
paper is as follows: Section 2 is an overview of existing
methods; in Section 3, we describe our proposed approach.
Section 4 includes experimental results and conclusions are
in Section 5.

2. OVERVIEW OF EXISTING METHODS

2.1. The Extended Carlberg Method

The Extended Carlberg Method (ECM) is the algorithm in
[1] designed to solve the problem of point-wise fixed-radius
PCA with the enhancement of increasing the radius when
there are not enough points for PCA. There are four steps to
this approach: (1) Gridding: The point cloud is first hashed
into a 2-dimensional x-y grid with an arbitrary grid
granularity to speed up nearest neighbor searches. (2) FRNN
Searches: The searches are performed pointwise on the 2D
grid. For each point to be classified, additional points are
found in enough grid cells to encompass the minimum PCA
radius defined by the dataset and added to a list of points for
PCA. (3) Radius Growing: If the number of points collected
in the cells is below the minimum threshold set for PCA, the
radius is increased and more cells are added to the search
list until either the number of points is sufficient for PCA or
the radius reaches a maximum parameter set by the user. (4)
PCA: The eigenpairs are found by general eigenvalue
decomposition on the covariance matrix.

2.2. The General 3D Gridding Algorithm

The general gridding algorithm is designed to solve the
problem of K Nearest Neighbor (KNN) with a 3D grid [2].
It consists of two steps: (1) Gridding: The point cloud is

hashed into a 3D grid. (2) Nearest Neighbor Searches: For
each point to be searched (the reference point) the point is
hashed again and a starting cell is found. From there the
search region is expanded by adding adjacent cells to the
search region. After a minimum of k points are added, the
search area is increased by a preset number of layers of cells
for more accuracy. Finally, after the potential nearest
neighbor points list is complete, the k nearest neighbors are
returned by computing the kth

 farthest point from the
reference point, and returning all points that are closer than
that.

3. PROPOSED METHOD

Our proposed method takes the general 3D grid–based
FRNN scheme and modifies it to approximate PCA. We
propose to use a FRNN search for high–density areas so as
to encompass the entire geometric feature, while using a
typical ANN search for low–density areas so as to obtain
enough points to perform PCA on.

We start with the same gridding approach described in
Section 2.2. However, when we do an initial search of the
minimum radius, we make a decision based on how many
points we find. If we have more points than we require for
PCA, we simply cull off all the points above a certain
distance to the original reference point. This approximates a
FRNN search for high–density areas. If there are insufficient
points after the distance culling, we then expand the search
radius until we find enough points in the grid to meet the
minimum number of points required for PCA. This is
effectively an ANN search for low-density areas.

In [1], the PCA radius must be large enough to
encompass enough points to overcome the noise in the
LiDAR scanner for all relevant terrain features. The
problem with that method is that in point clouds with large
variations in density, the PCA radius required is much larger
than is necessary for the higher–density regions.

With our hybrid method, the PCA radius automatically
expands to include relevant points in areas of low density,
where the scanner noise is most apparent. This provides a
reasonable classification approximation of the method in
[1], while resulting in a better run time as well as some
parallel scalability [4]. There are 4 major parts to the
algorithm: grid construction, range search, distance culling,
and principal component analysis (PCA), which are
described below.

3.1. Parameters

Grid granularity: Grid granularity is the length of each
voxel on the grid. A lower granularity can increase PCA
times because excess points are considered for range
culling. However, a very high granularity increases the time
required for range searches and grid construction. This
parameter should be set to a value close to the PCA radius.

 Minimum PCA radius: This is the minimum radius around
each point to be considered in performing PCA. This
parameter varies with the density of the point cloud. A
larger radius is more accurate in classifying dense noisy
LiDAR captures, but it also slows down the classification
algorithm because more points are considered on average.

Minimum Points for PCA: This is the minimum number of
points that the range search must find in order to perform
PCA. This parameter only becomes important if the density
of the point cloud varies significantly between regions.

Maximum Points for PCA: This is the maximum number of
points the PCA classifier considers per point. For portions of
point clouds that are dense, it is desirable to limit the
number of points considered. A higher value here results in
more accuracy, but also increases runtime. Generally, this
parameter is directly proportional to the density of the point
cloud.

3.2. Details of the Algorithm

Grid construction: Before actually querying points, we
need to construct a data structure in memory that organizes
the points in a spatially coherent manner. We use a spatial
hash function similar to [3] in order to organize the points
into a voxel grid.
Range Search: We do the range search the same way as the
approach described in Section 2.2. During the range search,
we keep track of all non-empty cells within the radius of the
search. For each point, we search the cell that contains the
point and the cells around it until we find enough points
required for PCA.
Distance Culling: If the number of points needed for PCA
is exceeded, we cull off all the points that are farther than
the PCA radius. This simulates a FRNN search for areas
with a high point– density. However, if after culling the
points, there are fewer than the minimum points required for
PCA, we simply use all available points to simulate an ANN
search. In this case, the density around the specific point
must be low. Low–density areas in the point cloud require a
less exact body of points to represent the geometric features
in the area; the only requirement becomes to have a
collection of points that encompasses a wide enough area to
characterize the feature. We take advantage of these two
properties and use the points we have found already in the
initial range search when encountering low density areas.
This provides resilience towards datasets with variable
density.
Curvature Analysis via PCA: In this step, we first
compute the 3×3 symmetric covariance matrixes of the
points and then perform singular value decomposition on
this matrix by using the QR algorithm [4]. After PCA, we
are left with 3 eigenpairs. The geometric classifications are

then decided the same way as [1]: (a) Planar, if λ1 ≈ λ2 >>
λ3, (b) Scatter if λ1 ≈ λ2 ≈ λ3, (c) Linear if λ1 >> λ2 ≈ λ3, (d)
Ground if λ1 ≈ λ2 >> λ3 and the normal vector’s z value is
above a certain threshold, (e) Other if all other tests fail.

4. EXPERIMENTAL RESULTS

Our proposed classifier is tested on various real and
synthetic datasets. These point clouds include 3 datasets
from a real LiDAR capture with generally uniform point
density, 3 aerial LiDAR simulations with variable density,
and 14 synthetic uniform random point clouds.

The accuracy results are obtained by assuming
results from [1] to be the ground truth. The tests are run on a
PC running Windows XP with an Intel Xeon X5355 CPU at
2.66 GHz and 4 GB of RAM. The results are shown in
Tables 1 and 2.

Dataset Time Points ECM
Time

Speed
up

Accuracy

Real1 7.9s 492989 138.3s 17.46 95.97%

Real2 9.0s 596996 177.0s 19.77 95.87%

Real3 9.4s 637573 209.2s 22.06 95.80%

Table 1 Runtimes, speed-up rates, and accuracy data for
constant–density aerial LiDAR returns. Minimum
(maximum) number of points for PCA is 15 (200). Grid
length is 0.5.

Dataset Time Points ECM
Time

Speed
up

Accuracy

Aerial1 55.0s 3762830 814s 14.80 99.21%

Aerial2 119.4s 7226259 1652s 13.84 99.40%

Aerial3 14.8s 704162 200s 13.54 97.63%

Table 2 Runtimes, speed-up rates, and accuracy data for
variable–density synthetic aerial LiDAR. Minimum
(maximum) number of points for PCA is 15 (1000). Grid
length is 0.5.

Figure 2 Percent error for the Real 2 dataset for various
PCA radii as a function of maximum PCA points.

0

5

10

15

20

25

20
0

40
0

60
0

80
0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

%
 E

rr
o

r

Maximum PCA Points

0.3

0.4

0.5

0.7

0.9

1.1

1.3

As shown in Tables 1 and 2, our proposed method is faster
than [1] by about a factor of 20 and 14 for real and synthetic
data respectively. Moreover, it is able to reach a high degree
of fidelity as compared to the original ground truth method
in [1] given a proper PCA radius. In addition to the data
confirmation, the results are visually indistinguishable as
well. There is a considerable amount of tolerance to the
maximum PCA points as shown in Figures 2 and 3. In
contrast, there seems to be a lack of tolerance to the PCA
radius. In practice however, we have found that the
optimum PCA radius for our scheme is proportional to that
used for generating the ground truth via ECM, and as such,
is not scene–dependent.

We run the synthetic datasets with fixed PCA radii
and grid granularity, but variable data size as shown in
Figure 4. Since the overall dimensions are constant, the
density rises with more points. As shown in Figure 4, our
proposed method shows a linear relationship between the
number of points and runtimes while the ECM rapidly
degrades in speed.
 The speed up factor of our algorithm on LiDAR
data varies between 13.5 to 22 times. Our method performs
just as well, if not better on the uniform–density datasets as
the variable–density ones. One reason might be that the real
dataset has higher point density for each terrain feature than
the synthetic aerial LiDAR data, and the improvements of
our proposed method allow us to use a smaller PCA radius
than in [1].
 Qiu et al. also use point-wise PCA on a point cloud
for 3D registration [5]. The difference is that they only use a
KNN of 50 points to do PCA. Also, they use a kd-tree rather
than a grid. It is interesting to note that their sequential CPU
processing times for a 68k point dataset are actually slower
than our times for a 704k point dataset; i.e. approximately
27 seconds versus our 14 seconds. Furthermore, the average
number of points used in our case is considerably larger.
Note that 50 nearest points used in [5] are too few to result
in sufficient classification accuracy for a variable–density

point cloud. While the approaches are different, this shows
that our method is competitive in regards to more complex
data structures.

5. CONCLUSIONS

Our proposed algorithm is considerably faster than the
existing approaches while providing high fidelity to the
results obtained from the ECM. In addition, it seems to scale
well with point density. The approach in [1] on the other
hand degrades rapidly when both density and points are
increased. Future work involves improving tolerance to
parameters and multicore or GPU implementations.

6. REFERENCES

 [1] Carlberg, M.; Gao, P.; Chen, G.; Zakhor, A.; , "Classifying
urban landscape in aerial LiDAR using 3D shape analysis," Image
Processing (ICIP), 2009 16th IEEE International Conference on ,
vol., no., pp.1701-1704, 7-10 Nov. 2009

[2] Weber, R.; Schek, H.; Blott, S.; “A Quantitative Analysis and
Performance Study for Similarity-Search Methods in High-
Dimensional Spaces,” International Conference on Very Large
Data Bases, 1998. VLDB '98. Proceedings of the 24rd International
Conference on Very Large Data Bases, Pp. 194-205.

[3] Leite, P.; Teixeira, J.; de Farias, T.; Teichrieb, V.; Kelner, J.; ,
"Massively Parallel Nearest Neighbor Queries for Dynamic Point
Clouds on the GPU," Computer Architecture and High
Performance Computing, 2009. SBAC-PAD '09. 21st International
Symposium on , vol., no., pp.19-25, 28-31 O

[4] Watkins, D. S.; “Understanding the QR Algorithm,” Society for
Industrial and Applied Mathematics. SIAM Review, Vol. 24, No. 4
(Oct., 1982), pp. 427-440

[5] Qiu D., May S., and Nüchter A.; “GPU-accelerated nearest
neighbor search for 3D registration,” International Conference on
Computer Vision Systems, Li`ege, Belgium, 2009.

0.01
0.1

1
10

100
1000

10000
100000

R
u

n
ti

m
e

 (
se

co
n

d
s)

Dataset size (points)

0.01

0.005

ECM

Figure 4 Synthetic benchmark tests on various numbers of
points. There are two sets of results with the proposed
method: one with a grid granularity of 0.005, and one with a
grid size of 0.01.

0

0.5

1

1.5

2

2.5

3
20

0

40
0

60
0

80
0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

%
 E

rr
o

r

Maximum PCA Points

0.3

0.4

0.5

0.6

0.7

0.9

1.1

Figure 3 Percent error for variable–density synthetic aerial
dataset 2 for various PCA radii as a function of maximum
PCA points.

