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Abstract—Smartphone apps for exposure notification and
contact tracing have been shown to be effective in controlling
the COVID-19 pandemic. However, there is evidence that the
Bluetooth Low Energy approach used for proximity detec-
tion by existing apps can be error-prone in areas with high
numbers of metallic objects. In this paper, we present a new
method for detecting whether or not two smartphones are
2 or fewer meters apart, intended to augment BLE-based
proximity detection methods. We design a set of binary machine
learning classifiers that take as input pairs of 10-second-long
segments of magnetometer traces. These classifiers identify pairs
of trace segments for which the two recording devices were 2
or fewer meters apart for at least 75% of the segment duration.
We introduce a simple method of compensating for different
magnetometer biases in heterogeneous devices. We confirm that
our classifiers can generalize well to both new buildings and
new devices whose traces are not present in their training data,
and characterize their overall accuracy for heterogeneous-device
proximity detection to be between 93.1% and 96.2%.

Index Terms—proximity detection, contact tracing, magne-
tometer traces, machine learning, heterogeneous devices

I. INTRODUCTION

The COVID-19 pandemic sparked a proliferation of “ex-
posure notification” and “contact tracing” smartphone apps
designed to alert users if they came within close proximity of
an individual infected with COVID-19 [1], [2], [3], [4]. Most
of these apps continuously track, in an oblique and privacy-
preserving manner, which other devices a user’s smartphone
has been near. When a user tests positive for COVID-
19, those other devices notify their users of their potential
exposure to the virus. Authors in [1], analyzing the effects
of the NHS COVID-19 app for England and Wales, conclude
that the app was effective in reducing the spread of the virus.

Currently, the majority of exposure notification and con-
tact tracing solutions are based on Bluetooth Low Energy
(BLE) token broadcasts, although approaches that augment
BLE with ultrasound broadcasts [5] and with analysis of
ambient sound fingerprints [6] have also been proposed.
The maximum distance from which a BLE token can be
received varies, but can be significantly longer than the social
distancing threshold of roughly 2 meters established by the
U.S. Centers for Disease Control and Prevention (CDC)
in 2020. Furthermore, evaluations of an app that uses the
Google/Apple Exposure Notification system in areas with
high numbers of metallic objects have demonstrated that the
system does not properly identify nearby devices in those
areas [7], [8].

Fig. 1. The high-level design of our magnetometer trace–based proximity
detection method.

In this work, we present a new magnetometer-based
method for detecting whether or not two smartphones are
in immediate physical proximity, i.e. 2 or fewer meters apart.
Specifically, we design and evaluate a set of binary machine
learning classifiers that take as input two 10-second segments
of smartphone magnetometer traces. These classifiers identify
pairs of trace segments for which the two recording devices
were 2 or fewer meters apart for at least 75% of the segment
duration. Our method is intended to enhance the accuracy of
smartphone-based exposure notification and contact tracing
apps; it is designed to be robust in dealing with inputs from
heterogeneous devices and from a wide range of physical
environments, with a low impact on device battery life.
Figure 1 shows the high-level design of our magnetometer
trace–based proximity detection method.

Disturbances in the Earth’s magnetic field — caused by
the steel used in the construction of many larger buildings,
as well as by metallic objects and furniture — introduce dis-
tortions into smartphone magnetometer readings. The pattern
of distortions seen in a device’s magnetometer readings over
time serves as a distinct “fingerprint” of the particular path
being walked through a building. Over the past decade, a
number of systems that localize devices within a building
using sequences of magnetometer readings over time, i.e.
magnetometer “traces,” have been proposed and evaluated in
the literature, with a typical average error of 0.5 – 3 meters
[9], [10], [11]. Because it requires devices to be close enough
to buildings or metallic objects for the devices’ magnetometer
readings to be affected, this method of proximity detection is
only usable indoors.

[12] presents a method of detecting whether two devices
are in close physical proximity by comparing segments of
their magnetometer traces, also intended for use in digital
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contact tracing. However, to measure the similarity between
two trace segments, this method relies only on the Pearson
correlation coefficient of the norms of the three-element
magnetic field vectors that make up the segments; a threshold
value is empirically determined based on the length of the
trace segments being compared, and a pair of segments is
classified as “Close” if the Pearson correlation coefficient
of their constituent magnetic field vectors’ norms is above
that threshold. In contrast, our methods make use of addi-
tional pre-processing steps, as well as a much wider variety
of similarity measurements that account for similarities or
dissimilarities between each of the three components of the
magnetic field vectors, in addition to the norms; we use
machine learning algorithms to, in effect, automatically de-
termine the combination of features and threshold values that
yields the highest proximity detection accuracy. Furthermore,
the authors in [12] only evaluated their approach on pairs of
segments that either (a) had the exact same trajectory, or (b)
were collected in two distinct areas, often in two different
buildings. We go beyond this, evaluating our methods on
sets of segment pairings with a wider variety of distances
between their two constituent segments, for which each
pair of segments were recorded in the same building. As
opposed to differentiating between segment pairings with
the same exact trajectory and segment pairings recorded in
entirely different areas, the classifiers that we present perform
proximity detection at a finer level of granularity, with a
more diverse set of “Close” traces; they differentiate between
pairings recorded 2 or fewer meters apart on average and
those recorded further apart but still within Bluetooth range
of each other. Lastly, while all of the traces used in the
evaluation of the method from [12] were collected with the
same smartphone model, we introduce a way of compensating
for different magnetometer biases in heterogeneous devices,
and evaluate our methods with this added mitigation by
training and evaluating classifiers on different subsets of
traces from 4 different smartphone models.

The remainder of this paper is structured as follows: In
Section II, we describe our approach and the composition of
our training and evaluation sets; in Section III, we introduce
a simple method of compensating for different magnetome-
ter biases in heterogeneous devices and present experiment
results; in Section IV, we conclude the paper and outline
directions for future work.

II. APPROACH

In this section, we detail how the magnetometer trace
data used in our experiments was collected, how groups of
uniform-length segments are extracted from traces for use in
training and evaluation sets, which types of segment pairs
make up our training and evaluation sets, and lastly which
features are calculated for each segment pair and passed as
inputs to the classifiers.

Data Collection and Preparation: We used traces from
the MagPIE dataset [13], [14], as well as traces we collected
ourselves on the UC Berkeley campus, to create training and
evaluation sets for our experiments.

The MagPIE dataset contains raw traces from a single
smartphone’s magnetometer, recorded in 3 different buildings
across the campus of the University of Illinois Urbana-
Champaign. We only used the traces that were recorded while

a person walked holding the smartphone; we did not use the
traces that were recorded while the smartphone was mounted
on a wheeled robot. We also did not use any of the “live load”
traces — i.e. the traces that were recorded with additional
metallic objects placed along the path being walked to make
the magnetic field in the area different than it was when other
traces were recorded in the same area.

In order to be able to evaluate how well our methods
perform on inputs from heterogeneous devices, we also
collected new magnetometer trace data in Cory Hall, a five-
story academic building on the UC Berkeley campus, using 4
different Android smartphones and the same tools employed
in the creation of the MagPIE dataset [13], [14]. On two
separate days, we collected data in a roughly 30m × 15m lab
space on the third floor of the building. Magnetometer traces
from a Samsung Galaxy S8, an Oppo RX17 Pro, a Google
Pixel, and a Google Pixel 3 1 were recorded using a slightly
modified version of the “MagnetometerV2” data collection
app [15] released by the authors of the MagPIE dataset [13],
[14]. Ground-truth position data was simultaneously recorded
using the MagPIE authors’ “BRG Trajectory” app [16] —
which uses the Google Tango API to continuously localize
a device within an indoor space — on a Tango-equipped
Lenovo Phab 2 Pro.

Similar to the traces we used from the MagPIE dataset, the
magnetometer traces we collected in Cory Hall were recorded
while a single person walked a number of intersecting linear
and non-linear paths while holding the Phab 2 Pro and one of
the 4 test phones at a time. The person who recorded the Cory
Hall traces navigated around hallways, cubicles, desks, office
chairs, electronic and mechanical equipment, and computers;
the smartphone recording the trace was always held flat in
the palm of one hand in a fixed orientation, and the Phab 2
Pro was held vertically upright, with its rear cameras facing
forward, in the other hand. The sets of paths walked with the
individual devices were broadly similar, but not entirely the
same; likewise, the set of paths walked on the first day of
data collection was different from the set of paths walked on
the second day.

In both the MagPIE and Cory Hall datasets, the magne-
tometer log file and corresponding position log file for a given
trace do not share the same sequence of entry timestamps.
Before transforming the traces into training and evaluation
sets, for each trace, we match each magnetometer reading
with a temporally “nearby” position measurement — i.e.
a position measurement whose timestamp is within 0.01
seconds of the magnetometer reading’s timestamp — from the
corresponding position log file, using the procedure described
in Section 3.3 of [17].

Segment Extraction: We extract segments of a uniform
temporal length LS from each magnetometer trace to use
in training and evaluation sets. Two sets, or “tracks,” of seg-
ments are extracted from each trace, where one track is offset
from the other by LS

2 seconds. Each track corresponds to a
particular starting position in the trace; the starting position
for the first track is 0 seconds and the starting position for
the second track is LS

2 seconds. For each track, the trace is
divided into contiguous, non-overlapping segments of length
LS . For example, for a 25-second trace with LS = 10

1Running Android versions 9, 8.1, 10, and 10, respectively
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seconds, the segments from the first track would cover the
intervals [0s, 10s] and (10s, 20s], while the segments from the
second track would cover the intervals [5s, 15s] and (15s, 25s],
as shown in Figure 2. Compared to a sliding-window method,
this method of segment extraction yields fewer segments, and
thus smaller training and evaluation sets. However, it bounds
the amount of overlap between segments — a given pair of
segments have at most 50% of their magnetometer readings
in common, and a given pair of segments from the same track
do not share any magnetometer readings. As detailed the next
section, we only pair up segments from tracks with the same
offset.

Segment Length: For all of the experiments detailed in
Section III, we set the segment length LS = 10 seconds.
This time interval is long enough to allow distinct signatures
of different paths to appear in segments, but short enough that
if two users were close together long enough for transmission
to occur, that period of contact would represent a significant
portion of the segment. In addition, this segment length is
within the range of time intervals that the authors in [12]
determined yielded the highest overall performance when
used with their method, as shown in Figure 9 of [12]. Using
a short segment length also allows a single system to easily
adapt to a wide range of contact duration thresholds for
different infectious diseases or variants; to determine if two
individuals were in immediate physical proximity for some
arbitrary amount of time, a system can simply keep a running
total of the number of LS-second intervals for which the two
were estimated to have been in immediate physical proximity.

Proximity Classes: To prepare training and evaluation sets
from a given pool of segments, we first isolate segments into
different groups. We assigned each segment from the MagPIE
dataset to one of 3 groups based on the building in which it
was recorded. Similarly, we assigned each segment from the
Cory Hall dataset to one of 2 groups based on the day on
which it was recorded.

We then enumerate every possible pairing of two distinct
segments that are both from the same group and from tracks
with the same offset — in a real-world proximity detection
system based on our methods, only segments recorded at or
around the same time would be input to the classifiers, and
BLE can likely be used to filter out segment pairs recorded in
entirely different buildings. For each segment pair (Si, Sj),
we iterate through every entry of Sj ; for each entry of Sj , we
find the temporally closest entry in Si and calculate the two-
dimensional distance d between the two entries’ ground-truth
positions. We then assign each segment pair a “proximity
class” based on an analysis of all of the pair’s entry distances
d. If the percentage of entries for which 0 m  d  2.25 m is
at least P , the segment pair’s proximity class is set to “Close.”
If the percentage of entries for which 3.25 m  d  20 m is
at least P , it is set to “Far.” For both of the sets of experiments
detailed in Section III, we evaluate our classifier design for
both P = 75% and P = 95%.

Segment pairings are dropped from the training and eval-
uation sets if neither of the aforementioned two criteria are
met. This excludes from the training and evaluation sets any
pairs of segments for which a significant portion of pairs of
corresponding entries were recorded more than 20 m apart on
average. We do this in an effort to focus the training process

on the fine-grained differentiation between segment pairs
recorded in immediate physical proximity and pairs recorded
in somewhat close physical proximity, i.e. Bluetooth range.
This is in contrast to an approach which would optimize
the classifiers for the coarse-grained differentiation between
pairs recorded in immediate physical proximity and pairs
recorded very far away from each other. The fact that we
only consider segment pairs (Si, Sj) where Si and Sj are
from tracks with the same offset guarantees that none of
the entries in Si also appear in Sj , so that the segment
pairs in our training and evaluation sets more closely mimic
real-world inputs. Although our classifiers are only trained
on segment pairs recorded  20 m apart, their accuracy
in distinguishing “Close” segment pairs from segment pairs
that were recorded > 20 m apart matches or exceeds their
accuracy in distinguishing “Close” pairs from pairs that were
recorded between 3.25 m and 20 m apart, as shown in Section
III.

Sensing Frequency: The sensing frequency of the traces
from the MagPIE dataset is roughly 50 Hz. The Samsung
Galaxy S8 and Google Pixel used to create the Cory Hall
dataset also record traces at 50 Hz, while the Oppo RX17
Pro and Google Pixel 3 record traces at 100 Hz. Before
calculating the features described below, we downsample all
traces to 2 Hz. This is a practical sensing frequency for a real-
world exposure notification app, with a low impact on device
battery life — tests in [18] found that continuously sensing
at 2 Hz reduced the battery life of a Samsung Galaxy S5 by
only 4%, compared to 24% when sensing at 50 Hz.

Classifier Input Features: Once all of the segment pairs
have been enumerated, and every pair has been assigned
a proximity class, we calculate a set of features for each
segment pair. These features are the inputs that are actually
passed directly to the classifiers and used by them to predict
the proximity classes of segment pairs.

Each magnetometer reading has three components: X, Y,
and Z, which represent the magnetic field intensity measured
by the magnetometer along the X, Y, and Z axes defined by
Android’s Sensor APIs [19]. For a given magnetometer trace
segment S, let |S| denote the number of entries in S. Define
MS,i[x], MS,i[y], and MS,i[z] as the X, Y, and Z components
of the magnetometer reading in the i-th entry of the segment
S. Additionally, define |MS,i| as the norm of the magnetic
field vector in the i-th entry of S.

Let MX(S) be a vector containing only the X-components
of the magnetometer readings in the entries of S, in the same
order as their corresponding entries:

MX(S) =
h
MS,1[x], MS,2[x], MS,3[x], . . . MS,|S|[x]

i

Define MY(S) and MZ(S) similarly. Likewise, let MN(S)
be a vector containing only the norms of the magnetometer
readings in the entries of S, in the same order as their
corresponding entries.

Consider a pair of trace segments, (Si, Sj). For each
pair of single-axis vectors — (MX(Si),MX(Sj)), (MY(Si),
MY(Sj)), and (MZ(Si),MZ(Sj)) — and additionally the pair
of norm vectors (MN(Si),MN(Sj)), the cosine similarity
as well as the Pearson, Spearman, and Kendall correlation
coefficients of the two segments’ vectors are passed as input
features to the classifiers. These similarity measurements are
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Fig. 2. An example of our segment extraction process, showing all 4 of the segments that would be extracted from a 25-second trace.

intended to provide the classifiers with indications of how
well the fluctuations in the measured magnetic field strength
in one segment match or align with the fluctuations in the
other segment.

Furthermore, for a pair of segments (Si, Sj), let
DX(Si, Sj) be a vector containing the differences between the
X-components of the magnetometer readings in the entries of
Si and Sj :

DX(Si, Sj) =
h
MSi,k[x] � MSj ,k[x] . . . 8 k  min(|Si|, |Sj |)

i

Define DY(Si, Sj) and DZ(Si, Sj) similarly, and let
DN(Si, Sj) likewise be a vector containing the differences
between the norms of the magnetometer readings in the
entries of Si and Sj . For each of these individual vectors
of differences — DX(Si, Sj), DY(Si, Sj), DZ(Si, Sj), and
DN(Si, Sj) — the mean, median, and standard deviation
of the vector’s elements are passed as input features to
the classifiers. These features are intended to provide the
classifiers with a summary of how far apart the magnetometer
readings in the two segments tend to be along each axis, and
an indication of whether or not this difference between their
readings tends to remain the same over time — i.e. whether
or not the fluctuations along a particular axis in each segment
follow a similar pattern.

Segment Alignment: In our empirical analysis of pairs of
segments from the two datasets, we found that, in a significant
number of “Close” segment pairs, both segments contain a
very similar pattern of magnetic field strength fluctuations,
but the pattern begins at a different time within each segment,
such that one segment “lags” another, usually by at most 1
second. This phenomenon is likely the result of two users
walking alongside each other for some time, with one slightly
ahead of the other.2 To correct for this, as detailed in Section
3.5.1 of [17], we find the optimal value �⇤, where �2 sec 
�⇤  2 sec, such that shifting Si by �⇤ seconds relative
to Sj results in the highest correlation of the norms of the
magnetometer readings. Then, we calculate all of the features
described above for the shifted segment pair; thus, the full
input to the classifiers consists of two sets of the features

2Or, in this specific case, considering how the datasets were collected,
one person walking very close to where they had previously walked while
recording a different trace.

described above — one for the original, unshifted Si and Sj ,
and another for the shifted Si and Sj .

III. EXPERIMENT RESULTS

In this section, we first train and evaluate classifiers on
sets of traces from the MagPIE dataset, which were recorded
across 3 different buildings using a single smartphone. Then,
we introduce a simple method of compensating for different
magnetometer biases in heterogeneous devices, and evaluate
our approach with this added mitigation by training and
evaluating classifiers on different subsets of the traces that we
recorded with 4 different smartphone models in Cory Hall.

Homogeneous-Device Experiments: To determine how
well our approach performs in a baseline setting without
the complications introduced by heterogeneous devices, and
to determine how well it generalizes to different build-
ings, we trained a set of three classifiers on data from the
MagPIE dataset. Each classifier was trained on data from
2 of the 3 buildings in which traces were recorded, and
evaluated on data from the remaining building. The total
numbers of “Close” / “Far” segment pairs generated from
the CSL, Loomis, and Talbot building traces were roughly
1,600/44,000, 1,400/19,000, and 700/12,000, respectively,
when P = 75%, and 1,200/32,000, 1,100/9,200, and
400/6,800 when P = 95%. For each of the three cases,
we created an evenly class-balanced training set consisting
of all “Close” segment pairings from the 2 training buildings
and an equal number of randomly selected “Far” pairings
from those 2 buildings. We then used these training sets to
train random forest classifiers — specifically, instances of
the RandomForestClassifier class from scikit-learn [20]
version 1.1.2, with the bootstrap option disabled and the rest
of the hyperparameters kept at their default values. Finally,
we evaluated each classifier on the entire set of “Close”
and “Far” segment pairings from its corresponding evaluation
building. Table I shows the results of these evaluations for
both P = 75% and P = 95%. The “TN” (“True Negatives”)
columns show the classifiers’ true negative rates, i.e. the
percentages of “Far” samples correctly identified as such.
Likewise, the “TP” (“True Positives”) columns show the
classifiers’ true positive rates, i.e. the percentages of “Close”
samples correctly identified as such. Additionally, the “TN
20+” column shows the percentage of segment pairs correctly
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TABLE I
RESULTS OF HOMOGENEOUS-DEVICE EXPERIMENTS

USING OUR METHODS

Evaluation P = 75% P = 95%
Building TN 20+ TN TP TN TP

CSL 99.9% 99.9% 69.1% 99.9% 72.3%
Loomis 91.7% 88.5% 99.2% 88.1% 98.7%
Talbot 98.3% 93.5% 93.1% 91.7% 94.5%

Average 96.6% 94.0% 87.1% 93.2% 88.5%

TABLE II
RESULTS OF HOMOGENEOUS-DEVICE EXPERIMENTS

USING METHOD FROM [12]

Evaluation P = 75%
Building TN TP

CSL 70.3% 66.3%
Loomis 67.4% 75.0%
Talbot 69.3% 62.8%

Average 69.0% 68.0%

identified as such by each classifier when it was evaluated on
the set of all segment pairs from its evaluation building for
which at least 75% of pairs of corresponding entries were
recorded at least 20 m apart. The classifiers perform well
overall when evaluated on data from buildings other than
those whose data was included in their respective training
sets. Their performance also remains strong across both looser
and stricter definitions of “Close” and “Far,” i.e. lower and
higher values of P , which indicates that our methods are
adaptable to a range of different proximity definitions and
contact duration thresholds.

As a basis for comparison, we also quantified the per-
formance of the method presented in [12] for P = 75%.
As noted above, to determine the similarity between two
segments, this method relies only on the Pearson correlation
coefficient of the norms of the magnetic field vectors that
make up the segments; a pair of segments is classified
as “Close” if the correlation coefficient is higher than a
threshold value ✓c. To perform this comparison, we trained
another 3 RandomForestClassifiers like the ones described
above, but with all of the input features removed except
for the Pearson correlation coefficient of the norms of the
segments’ magnetometer readings — essentially, we used
RandomForestClassifiers as a means of selecting the
threshold values ✓c that yielded the highest overall perfor-
mance. We then evaluated each of these new classifiers on
the entire set of “Close” and “Far” segment pairings from its
corresponding evaluation building, just as we did with the first
set of classifiers. Table II shows the results of this evaluation;
our methods substantially outperform the method presented
in [12], with the true negative and true positive rates for our
methods more than 19% higher on average than those for the
method from [12].

Heterogeneous-Device Experiments: The magnetometers
in different devices have different biases and sensitivities;
examples of these can be seen in Figure 3, which shows the X
components of our 4 test phones’ magnetometer readings over
time for the periods during which they were each individually
taken down the same corridor in Cory Hall. The pattern
of fluctuations is quite similar in all 4 lines, but there are
fairly large vertical gaps between the lines, and there are
small variations in the height of the “peaks” and depths of

Fig. 3. The X components of the 4 test devices’ magnetometer readings, in
µT, over time as each of the devices was individually taken down the same
corridor.

the “valleys” across the 4 traces. The Y components and Z
components exhibit similar patterns.

To make our methods as robust as possible in the face of
inputs from heterogeneous devices, we explicitly compensate
for the biases of individual magnetometers by determining
a single baseline magnetometer reading for each device,
and then subtracting that baseline reading from all of the
magnetometer readings in the traces recorded by that device.

To determine the baseline magnetometer readings for our
4 test phones, we used the MagnetometerV2 app to record
the devices’ magnetometer traces as they were all held steady
in the exact same location — in the center of a field on the
UC Berkeley campus, relatively far from buildings and other
sources of magnetic anomalies — and in the same orientation
in which they were held while traces were recorded in Cory
Hall. We set the X, Y, and Z components of each phone’s
baseline reading to the average value of those respective
components across all of the magnetometer readings in the
phone’s steady-position trace. This method of determining a
baseline reading is fast and simple enough to be incorporated
into the setup process for a real-world exposure notification
or contact tracing app.

To evaluate how well our methods — including the baseline
subtraction described above — perform in a heterogeneous-
device setting, we trained a set of classifiers on the data that
we recorded with our 4 test phones in Cory Hall. The total
numbers of “Close” / “Far” segment pairs generated from the
first and second day’s traces from Cory Hall were roughly
590/4,200 and 450/2,200, respectively, when P = 75%,
and 370/2,200 and 200/900 when P = 95%. For over
74% of these segment pairs, the two constituent segments
were recorded by two different phone models. We trained
4 classifiers in total; each classifier was trained on segment
pairs from 3 of the phones and evaluated only on segment
pairs involving the remaining phone (the “evaluation device”).
To compile the training and evaluation sets for each classifier,
we first assigned all segment pairs for which at least one of
the two segments was recorded by the evaluation device to
the evaluation set. Then, from the remaining pairs — i.e. the
pairs for which neither of the two segments was recorded
by the evaluation device — we compiled an evenly class-
balanced training set. This training set consisted of all of the
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TABLE III
RESULTS OF HETEROGENEOUS-DEVICE EXPERIMENTS

USING OUR METHODS

Evaluation P = 75% P = 95%
Device TN 20+ TN TP TN TP

Galaxy S8 98.7% 97.8% 92.6% 97.8% 94.0%
RX17 Pro 98.4% 97.6% 91.9% 98.7% 93.0%

Pixel 3 98.6% 96.8% 95.6% 95.5% 96.6%
Pixel 98.9% 98.2% 87.9% 99.8% 88.3%

Average 98.7% 97.6% 92.0% 98.0% 93.0%

TABLE IV
RESULTS OF HETEROGENEOUS-DEVICE EXPERIMENTS

USING METHOD FROM [12]

Evaluation P = 75%
Device TN TP

Galaxy S8 61.7% 59.5%
RX17 Pro 60.1% 67.2%

Pixel 3 58.1% 64.6%
Pixel 58.1% 62.5%

Average 59.5% 63.5%

“Close” segment pairs from the set of remaining pairings and
an equal number of randomly selected “Far” pairs from that
same set. Finally, we trained a RandomForestClassifier
on this class-balanced training set, and evaluated it on the
entire evaluation set. Table III shows the results of these
heterogeneous-device experiments — the percentage of true
negative samples correctly identified and the percentage of
true positive samples correctly identified, for P = 75% and
for P = 95%. The results confirm that classifiers developed
using our methods can distinguish between “Close” and “Far”
segment pairs recorded by heterogeneous devices with high
accuracy, and that their performance is solid even when
evaluated on data from devices other than those whose data
is included in the training set.

As with the homogeneous-device experiments, we com-
pared the performance of our heterogeneous-device methods
to that of the method presented in [12] for P = 75%, training
another set of 4 RandomForestClassifiers like the ones
described above, with all of of the input features removed
except for the Pearson correlation coefficient of the norms
of the segments’ magnetometer readings. We then evaluated
each new Pearson coefficient–only classifier on the set of all
segment pairs involving its corresponding evaluation device,
just as we did with the first set of 4 classifiers. Table IV shows
the results of this evaluation; the true negative rate and true
positive rate for our methods are more than 37% and 28%
higher on average than the ones for the method from [12],
respectively.

IV. CONCLUSION AND FUTURE WORK

In this work, we presented a new magnetometer-based
method for detecting whether or not two smartphones are
2 or fewer meters apart, intended for use in exposure notifi-
cation and contact tracing apps. Our evaluations demonstrate
that classifiers developed using our methods can distinguish
between “Close” and “Far” segment pairs from non–tilt-
compensated traces with over 90% balanced accuracy on
average. Our results also show that our classifiers can gen-
eralize well to different buildings and devices whose traces
were not present in their training data. Notably, the traces

used in these experiments were not tilt-compensated. Tilt
compensation would be necessary for a real-world proximity
detection system, as the traces input to the system would be
recorded in many different orientations. However, in our case,
all 4 test devices were held in the same orientation during
the recording of all of the traces, so tilt compensation is
not strictly necessary for performing accurate comparisons of
the traces. Future work will include using the accelerometer
and gyroscope data recorded by the MagnetometerV2 app to
tilt-compensate the traces, likely using one of several well-
established tilt-compensation procedures.
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