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Figure 1: Address information and business reviews are projected from a tagged 

database image onto a user generated query using our system. 

ABSTRACT 

City-scale image retrieval and tagging is an important problem with many applications in 

localization and augmented reality. The basic idea is to match a user generated query 

image against a database of tagged images. Once a correct match is retrieved, pose 

information associated with the retrieved image can be used to augment the query image. 

In this report we describe an approach to large scale image retrieval in urban environment 

by taking advantage of coarse position estimates available on many mobile devices today, 

e.g. via GPS or cell tower triangulation. By partitioning the large image database for a 

given geographic region into a number of overlapping cells each with its own prebuilt 

search and retrieval structure, we avoid the performance degradation faced by many city-

scale retrieval systems. Typically, both retrieval speed and retrieval accuracy decreases as 

the size of the database grows. Once a correct image match is found, a set of point to 

point correspondences between query and retrieved image is used to compute a 

homography transformation which can then be used to transfer tag information associated 
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with points in the database image onto the query image with near pixel-level accuracy.  

An example of a tagged query outputted by our system and its corresponding database 

match is shown in Figure 1. We demonstrate retrieval results over a ~12,000 image 

database covering a 1 km2 area of downtown Berkeley and illustrate tag transfer results 

over the same dataset. 

Index Terms – augmented reality, image tagging, image matching, image retrieval, 

visual landmark recognition 
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1. INTRODUCTION 

In recent years, a number of large scale image databases for outdoor scenes such as 

Google StreetView and Bing StreetSide have been developed for general public use. In 

these applications, the user provides a textual description of a location in the form of a 

business name, address, or lat/lon coordinates in order to retrieve images associated with 

the location. 

Given the widespread availability of such datasets, one can imagine performing the 

reverse image-to-text query operation. In particular, by matching a user captured image 

against a geo-tagged database of street level images, one can retrieve location specific 

meta-information, such as business ratings or address information for the buildings and 

structures in the vicinity. This can be used in mobile augmented reality applications, 

which for the most part do not currently utilize visual scene information1

Image retrieval systems where user generated query images are matched against an 

existing image database of a region, e.g. from Google’s Street View, or Microsoft’s 

StreetSide have traditionally been framed around solving the problem of localization and 

pose recovery. In these systems, once the best image match has been retrieved, the known 

pose of the database image is used to determine the pose of the query image supplied by 

the user [

. 

1]. A number of such systems have been proposed in recent years: [2] uses a 

vocabulary tree to perform large scale localization over 30,000 images covering a 

continuous 20km stretch of urban terrain. [3] also uses a vocabulary tree to perform large 

                                                 
1 Systems that currently rely on visual information typically do so through the use of 
visual fiduciary markers; as such, they do not scale to large scale urban environments. 
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scale localization using 31,034 images from the Earthmine database, but incorporates 3D 

building information to preprocess building imagery into orthophotos. 

In most existing large scale image retrieval systems, performance degrades as the 

number of candidate images in the database increases. [4] addresses this problem by 

using GPS information to localize users into a uniform region grid; a kd-tree is then 

constructed near real time over a preprocessed set of features from nearby regions for on-

the-device queries. In practice however, GPS information is oftentimes not readily 

available, especially in urban environments where satellite reception is hindered by 

“urban canyons”, and typically subject to relatively large error. Therefore, to avoid 

retrieval performance degradation with image database size, we propose to take 

advantage of the approximate coarse localization available on most mobile devices2

Using a coarse location approximation, we can direct the user generated query image 

to a small, bounded, subset of cells to be queried against. To determine the cells whose 

, e.g. 

cell tower triangulation, by decomposing large geographic areas into overlapping cells, 

much the same way as wireless operators divide a region into smaller cells to deal with 

the handoff problem; as such, each cell has its own mini image database with fewer 

pictures than the one corresponding to the entire region. We then find the best match to 

the query image against the smaller databases corresponding to these cells. The main 

advantage of such a “divide and conquer” approach is that it mitigates the performance 

degradation resulting from image retrieval against a very large database and as such, it 

scales to arbitrarily large regions. 

                                                 
2In the United States the FCC e911 requirements specify for 67% (95%) of location 
requests to be localized within 50 (150) meters of the true user location. 
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results are combined, we use the location and size of the “ambiguity circle” defined as the 

uncertainty in user location as specified by GPS or cell tower triangulation. The search 

cluster for each cell is built offline in order to ensure interactivity and real time operation; 

search results corresponding to selected cells are further combined and processed to 

retrieve a matching image to the user query. Once the best database match for the query 

image is retrieved, the information associated with the database image can be projected 

onto the query image through the use of a homography matrix derived from the point-to-

point correspondence between the two images.  

An overview of our system is shown in Figure 2. In the remainder of this report, we 

will review various components of the system shown in Figure 2. The outline of the 

report is as follows: We describe our image retrieval and our tag transfer approach in 

Sections 2 and 3 respectively, go over our experimental setup and results in Section 4, 

and present our conclusions in Section 5. 
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Figure 2: Outline of our retrieval/tagging pipeline. 

2. IMAGE RETRIEVAL APPROACH 

In urban environments, street-view datasets tend to have uniform spatial density. As such, 

we partition a city’s geography into uniformly spaced overlapping cells of equal size so 

that each cell contains approximately the same number of images. We do this by 

grouping local images into circular cells of radius 𝑟 centered at the vertices of a 



9 
 

hexagonal lattice, chosen for its symmetry and spatial packing properties, as shown in 

Figure 3(a). 

 

r
g

d

 
(a) (b) 

Figure 3: (a) Local search cells built over a hexagonal lattice. (b) Ambiguity circle of 

radius 𝑔 = 𝜆 + 𝛼 fully contained in the intersection of 3 cells of radius r with separation 

d. 

2.1 Cell Layout Geometry 

Let 𝛼 be an upper bound on the distance between two capture locations that capture the 

same view, and 𝜆 be the maximum discrepancy between a query’s actual and reported 

location. The location of a database match can be off by a distance of up to 𝜆 + 𝛼 from a 

query’s reported location. As such, to guarantee that a given query image has at least one 

cell containing all true matches, any circular region of radius 𝑔 = 𝜆 + 𝛼, referred to as an 

“ambiguity circle”, must be fully contained by at least one cell in the cell grid shown in 

Figure 3(a). We refer to this condition as Single Cell Existence, or SCE, since satisfying 

it implies the existence of a true match, if one exists, within a single search cell. 

Intuitively, for SCE to be satisfied there must be sufficient overlap between cells. More 

specifically, geometric inspection of Figure 3(b) shows that this condition is satisfied if 

r 
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an ambiguity circle of radius 𝑔 can be fully contained within the region of intersection of 

three adjacent cells; a proof of this is presented in Appendix A: SCE . Let 𝑑 denote the 

distance between the centers of the search cells. Even though sufficiently small values of 

𝑑 can satisfy SCE, in practice it is advantageous to use the largest possible value of 𝑑 so 

as to minimize cell overlap and to reduce storage and computation overhead. In what 

follows we describe a way to find an upper bound on 𝑑 that satisfies SCE. 

The largest circular region, with radius g, which fits within the intersection of 3 

overlapping cell is shown in Figure 3(b). In particular, we note that it is internally tangent 

to each cell and its center is equidistant to the centers of the 3 cells. Thus, the centers of 

the three cells form an equilateral triangle with sides of length 𝑑 whose centroid is at the 

center of the circular region. Since the distance between the vertex and centroid of an 

equilateral triangle is 𝑑/√3, and the region is internally tangent to the cells, the radius of 

a cell must be 𝑔 + 𝑑 √3⁄ . Thus for SCE to be satisfied, we must have: 

 𝑑 ≤ √3(𝑟 − 𝑔) (1) 

The above relationship guarantees that a matching image to a query exists in the cell 

whose center is closest to its reported location; this is because the query’s ambiguity 

circle is fully contained within that cell. If we further constrain the radius of every search 

cell to be equal to the distance between adjacent cells, i.e. 𝑑 = 𝑟, then Equation (1) 

becomes: 

 𝑑 = 𝑟 ≥
√3

√3 − 1
𝑔 (2) 

r 



11 
 

This case is shown in Figure 3(a) and simple geometric inspection reveals that every 

database image is always contained in either 3 or 4 search cells3

Figure 3

. Specifically, any 

database image whose location falls within the “petal” region of the layout scheme, one 

of which is highlighted in (a), is contained in exactly 4 cells. Similarly, database 

images whose location lie outside the “petal” regions are contained in exactly 3 cells. We 

exploit this observation in Section 2.3 to combine results from multiple cells. 

2.2 Local Search Methods 

We use a feature based approach similar to that of [4] [5] [6] for search in each local cell. 

Specifically, we pair SIFT [7] features in the query image with their approximate nearest 

neighbor in the database images using a FLANN [8] kd-tree4

2.2.1 Uniqueness Test 

 of all features in the local 

cell. To determine whether a feature pair is a match or not, we use the Uniqueness Test 

outlined below.  A score is then generated for each candidate database match as the 

number of feature matches between database image and a given query image. The 

database image that best matches the query image is the one with the largest score. 

Similar to the multiple ratio test proposed in [4], we match the features in a query image 

𝐼𝑞 to features from a set of images 𝑰𝒄  =  {𝐼1, 𝐼2 … , 𝐼𝑚} in a local cell 𝑐. While a kd-tree 

can provide us with the nearest neighbor database feature for any query feature, a nearest 

neighbor pairing alone is not always indicative of a “good” feature match. We propose a 

                                                 
3 Strictly speaking, this does not hold if the image location is at the boundaries of the cell 
grid. 
4 We use a single, rather than multiple, kd-tree implementation since we parallelize the 
approximate nearest neighbor search across multiple cells as outlined in Section 2.3. For 
a single cell search strategy, a multiple kd-tree implementation is more appropriate. 



12 
 

new method for evaluating the ‘goodness’ of a feature pair by comparing the nearest 

neighbor distances of parallel kd-tree queries while enforcing a uniqueness constraint on 

the match pairs. Intuitively, the distance between a query feature and a correct match 

should be significantly better than the distance between the query feature and the closest 

incorrect match. Specifically, provided there are a sufficiently large number of local cells 

in our database, for any query location we identify a dummy cell 𝑐′ with image set 

𝐼𝑐′  =  {𝐼1, 𝐼2 … , 𝐼𝑛} that the query location is known not to reside in. The features in 𝐼𝑐 

and 𝐼𝑐′ have been put into an approximate nearest neighbor kd-tree offline. For each 

feature 𝑓𝑞 ∈ 𝐼𝑞 we can, in parallel, compute its nearest neighbors 𝑓𝑐 and 𝑓𝑐′ in 𝐼𝑐 and 𝐼𝑐′ 

respectively. A feature pair (𝑓𝑞 ,𝑓𝑐) is considered a good match if (a) ∆�𝑓𝑞 ,𝑓𝑐� <

∆�𝑓𝑞 ,𝑓𝑐′� where ∆ is the Euclidean distance, and (b) 𝑓𝑐 has not already been matched with 

another feature in the query image. 

2.3 Combining Results from Multiple Cells 

We now describe the “Select Cells” block in Figure 2. The most straightforward way to 

retrieve the matching image to a query is to search over the cell whose center comes 

closest to the reported location the query. However, given the cell geometry constraint in 

Equation (2) ensuring that each location is either in 3 or 4 cells, it is conceivable to 

improve the single cell matching performance by combining match results from multiple 

cells. In practice, since we are given coarse reported locations rather than actual 

locations, it is impossible to determine which 3 to 4 cells to search over. As such, we 

search over all cells that intersect with a query’s ambiguity circle, and combine the scores 

for all resulting candidate matches; we refer to this as “cell combination”.  Assuming the 

cell layout structure satisfies the condition in Equation (2) with 𝑑 = 𝑟, the ambiguity 
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circle for a given query image can intersect with at most 9 cells as shown in Figure 4, 

placing an upper bound on the maximum number of local searches per query. We 

combine results from multiple cells by a simple summation of the scores from the queried 

cells as shown in the “Combine Results” block in Figure 2. Since each database image is 

contained in a variable number of cells, it is conceivable that the combined score will be 

confounded by whether the database match is contained in 3 or 4 cells. This situation can 

be rectified by either adopting a hexagonal, rather than a circular, cell geometry or by 

weighing the combined score based on the number of cells the database match is 

contained in. We have empirically found that in practice, this confound does not 

significantly affect retrieval performance. 

 

 

Figure 4: The number of cells intersected by ambiguity circles, as defined by Equation 2, 

centered at various regions in the hexagonal lattice grid. The regions colored in red, 

yellow, light blue, and blue corresponds to cases where the ambiguity circle intersects 9, 

8, 7, and 6 cells respectively. The boundary of a cell is outlined in black. The vertices of 

neighboring cells form equilateral triangles as indicated by the blue lines. 

9 Cell Overlap 8 Cell Overlap 7 Cell Overlap 6 Cell Overlap 
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2.4 Geometric Consistency and Re-ranking of Results 

After combining scores across multiple cells, we apply an additional geometric 

consistency check to eliminate all feature matches that do not satisfy the epipolar 

constraints as shown in Figure 5. 

 

Figure 5: The point XL observed in the left image must be observed in the right image 

along an epipolar line shown in red. OL and OL denote the focal points of the left and 

right image respectively. 

Specifically, we use a RANSAC [9] loop to compute the fundamental matrix and 

discard all outlier feature matches [10]5

2.3

. Furthermore, to account for differences in 

angles, we filter out feature matches where the angle of the SIFT features differ by more 

than 0.2 radians. Applying these two additional constraints to the feature matches from 

Section  yields a re-ranked list of candidate image as shown in the “Geometric 

Consistency and Rotation Re-ranking” block in Figure 2. 

                                                 
5 For convenience, we provide an outline of Hartley and Zizzerman’s algorithm in 
Appendix B: RANSAC Homography and Fundamental Matrix calculations. 
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Since we are concerned with retrieving only a single matching image, we can reduce 

computational cost by computing only a partial re-ranking. In particular, let 𝑆 be the 

sorted list of ranked database candidates from Section 2.3 and 𝑆′ be a sorted list of re-

ranked candidates that we wish to generate. We loop through, from best to worst, the 

candidates in 𝑆 and insert the re-ranked candidates in 𝑆′. Since the geometric consistency 

and SIFT angle checks only remove bad feature matches and do not introduce new 

matches, the score of any particular candidate after re-ranking can only decrease. As 

such, the first 𝑗 elements in 𝑆′ are guaranteed to be stable once we come across a 

candidate, 𝑠, whose score before re-ranking is less than the re-ranked score of the 𝑗𝑡ℎ 

candidate in 𝑆′; i.e. 𝑠′𝑗 > 𝑠. In the event that all features are removed as a result of this 

filtering, we pass S directly to our Bayesian Post Processing outlined below. 

2.5 Bayesian Post Processing on the Top Results 

As a final step, we apply a "distance filter" to refine our results based on the distance 

from the user’s reported location to the location of the candidate database image. Using 

this distance 𝛿 and the score 𝑠′ from Section 2.4, we re-rank our results by using a Naive 

Bayes classifier to generate a match likelihood for each candidate image. 

3. TAG TRANSFER APPROACH 

Assuming a good image match is retrieved6

                                                 
6 This is a reasonable assumption as we can simply ask the user to generate a new query, 
possibly from a different vantage point, if the match confidence from Section 

, we must transfer the tag information from 

the matched database image to the query image. As our system is designed for use in 

urban environments, we assume that both the query and database image contain a 

2.5 is 
below a set threshold. 
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dominant plane – typically this will be in the form of a building facade. Under this 

assumption, we can derive a homography transformation which is then used to project the 

tag information associated with the matched database image onto the query image. 

3.1 Pre-processing of Database Tags 

For our particular application, our tags are stored as text data associated with rays in 3D 

space, i.e. lat, long, alt, and yaw. To integrate these tags into retrieval system, we first 

associate every tag with its nearby database images. In particular, because we have the 

location and pose of every database images, we can project the nearby tags of every 

database image onto the database image plane. We use points on the image plane rather 

than the database image itself because a query image might only partially overlap a 

database image in terms of content. To accurately tag a query image, we must therefore 

consider not only the tags within a database image, but also tags lying outside the field-

of-view of the image. This process is illustrated in Figure 6. 

 

Figure 6: To account for differences in viewpoint between the database and query image, 

tags are associated with points in the database image plane. 
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3.2 Generating Additional Feature Matches 

Since the kd-tree used in Section 2.2 pairs features in the query against features in the 

entire database cell, the final set of matched features following the combination and re-

ranking steps outlined in Sections 2.3-2.5 might yield too few match pairs to reliably 

compute a homography between the query and retrieved image. By re-matching features 

directly between the query and top database image, we can increase the number of good 

feature match pairs. To re-match features, we prebuild kd-tree indexes for each database 

image. Experimentally, we find that combining the recomputed feature match pairs with 

the previous feature matches from the image retrieval pipeline significantly increases the 

accuracy of the computed homography matrix. 

3.3 Computing and Rejecting Homographies 

Similar to the fundamental matrix calculations performed in Section 2.4, we use 

RANSAC to obtain a robust estimation of the homography matrix between the query and 

database image [11]7

12

. Though the top 1 match from the retrieval pipeline has the highest 

a priori probability of being a correct match, the quality of the computed homography 

between the matches also is a strong indication of match success. We quantify the 

"goodness" of a homography matrix 𝑯 by computing its determinant. In particular, very 

large or small values of det(𝑯) are indicative of a degenerate homography [ ], and 

negative values of det(𝑯) indicate a reflective component – a physical impossibility in 

our application. In addition, we perform checks for other known physical impossibilities 

such as strong skew and rotation. If we cannot find a valid homography under these 

                                                 
7 For convenience, we provide an outline of Hartley and Zizzerman’s algorithm in 
Appendix B: RANSAC Homography and Fundamental Matrix calculations. 
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criteria, we repeat the process on the next highest ranked match until an acceptable 

homography is found. 

3.4 Homography Tag Transfer 

Assuming an acceptable homography matrix is found, we apply the homography to all 

tags associated with the database image and superimpose the textual tags onto the query 

image. Since the tags are already represented as 2D points on the database image plane 

from Section 3.1, this is a simple matrix multiplication: 

𝑝𝑞𝑢𝑒𝑟𝑦 = 𝑯𝑝𝑚𝑎𝑡𝑐ℎ 

Where 𝑝 denotes the 2D position of the tag on the image plane, and H is the computed 

homography matrix. 

4. EXPERIMENTAL RESULTS 

Our database is from Earthmine Inc., i.e. the same source used in [3], and consists of 

street level images collected over a ~1 km2 area of downtown Berkeley. Using multiple 

viewpoints of a scene has been shown to increase the detection rate in retrieval tasks [13]. 

As such, we extract 6 images per location with 3 images from each side of the capture 

vehicle, yielding roughly 12000 images with approximately one fronto-parallel and two 

perspective views per building. Each 768×512 pixel image has a 60 degree field of view 

and 50% overlap with neighboring images. This process is illustrated in Figure 7. 
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Figure 7: 6 images are extracted from each vehicle capture location. Each image has a 

60° field of view and are oriented at 60°, 90°, 120°, 240°, 270°, and 300° angles with 

respect to the front of the capture vehicle. 

For our Berkeley dataset, we have found, through examination, 25 meters to be a 

reasonable value for 𝛼, with 50 meters being the maximum distance between two 

locations capturing the same view. Assuming that the maximum discrepancy in reported 

location 𝜆 is 75 meters, we space our cells based on an ambiguity radius 𝑔 of 100 meters 

with 𝑟 = 𝑑 = 236.6 meters in order to satisfy Equation (2). As such, our database is 

divided into 25 cells with each cell containing roughly 1500 images. 
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Set # Camera Orientation Focal Length Size Count Comments 
1 SLR Landscape Fixed 765x512 100 Same views as set5 
2 SLR Landscape Fixed 765x512 65 Used for training 
3 SLR Landscape Varying 765x512 84  
4 Smartphone Portrait Fixed 504x840 112  
5v Smartphone Landscape Fixed 512x680 100 Same views as set1 
5h Smartphone Portrait Fixed 680x512 100 Same views as set1 
Table 1: Query sets used to generate Figure 5 and Figure 6. 

Table 1 shows the various query sets we use to characterize the performance of our 

system. As seen, 561 query images, downsampled to approximately the same size as our 

database images, are taken using a digital camera and cell phone in fair weather with 

automatic camera settings. These images are tagged with their reported GPS location 

obtained either through the device’s built-in GPS unit or via an external GPS receiver. 

The Naive Bayes classifier uses the 65 query images in set 2 with a total of 5499 

candidate database images for training. 

Figure 8: Successive performance gains due to the steps outlined in Sections 2.3-2.5  

compared against a single cell baseline. 
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Figure 9: Performance of our image retrieval approach across various datasets. 

4.1 Retrieval Performance 

Figure 8 shows the incremental gains in performance due to the steps outlined in Sections 

2.3-2.5 of our retrieval pipeline for top 1-10 retrieved images using query set 1 of Table 

1. As a baseline, we examine the results of querying against a single FLANN kd-tree cell 

without geometric verification or Bayesian post-processing. For top 1 retrieval the 

baseline single cell approach results in a 78% match rate, as compared to a 95% match 

rate from applying the steps described in Sections 2.3-2.5. Specifically, the multi-cell 

combination step outlined in Section 2.3 yielded a 8% improvement from the baseline, 

adding the geometric consistency checks outlined in Section 2.4 led to an additional 7% 

improvement, and the Bayesian post processing step outlined in Section 2.5 led to a final 

2% improvement in performance. In general, we find that query images containing large 

amounts of street and sky features result in poor retrieval performance. This is most 
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apparent in query sets 4 and 5v, which are taken in a portrait orientation and as such 

capture a great deal of street and sky detail. The performance of our retrieval pipeline 

across various datasets is shown in Figure 9. As seen, there is a visible decrease in 

performance on query sets with portrait orientations. Furthermore, query images acquired 

from digital SLRs tend to perform better than those acquired from smartphones. 

Even though the cell structure used in our experiment has been designed to handle 

maximum error in reported location of up to λ = 75 meters, in practice, the reported 

GPS location obtained during query capture process was considerably more accurate. To 

simulate much noisier location readings, such as those obtained in urban settings, we 

uniformly sample with 1 meter resolution, all points up to λ = 75, meters from the 

acquired GPS location for each query image, yielding 𝜋752 ≅ 17,000 locations per 

query. We then feed the query images with these simulated locations into our retrieval 

pipeline and characterize its performance. Our results, not shown here, indicate less than 

1% change in performance under such simulated location ambiguity; this shows that the 

reported location is not significant as long as it falls within λ = 75 meters of the actual 

location as supported by the system. 

To further characterize the robustness of our system, we have simulated its 

performance against location errors of up to 200 meters based on an exponential 

probability distribution, approximating the 67% (95%) within 50 (150) meter location 

accuracy requirement mandated by the FCC for e911 purposes [14]. Results shown in 

Figure 9 for set 1, labeled as “set1 FCC”, indicate that the greater location ambiguity for 

“set1 FCC” leads to an 8% drop in top 1 retrieval performance as compared to “set1” 
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which corresponds to the more accurate reported GPS location; top 5-10 retrieval 

performance remained roughly unchanged. 

We have found that the conditional probability, resulting from the Bayesian Post-

Processing set of Section 2.5, for the top match acts as a good confidence indicator for 

whether our system has found a correct match. For queries with a confidence indicator 

greater than 0.8, our image retrieval system generates a top result match 96% of the time, 

while queries with a confidence indicator less than 0.4 fail to generate a top result match 

86% of the time. This correlation between our confidence indicator and image retrieval 

performance across all test sets is shown in Figure 10. 

Figure 10: Performance of the image retrieval based on the query’s confidence indicator 

across all test sets. 
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4.2 Tag Transfer Performance 

To characterize the performance of our tag transfer approach, we examine the set of 

retrieved images for which a valid homography is detected per Section 3.3 and at least 

one tag is available. We evaluate these tagged images based on the pixel location 

accuracy of the transferred tags as compared to the database image. A query image whose 

tags haves been transferred correctly from its database match is considered a correctly 

tagged image. Results are shown in Table 2. 

Set # # of Tagged Images # of Correctly Tagged Images % Correctly Tagged 
1 63 54 86% 
3 52 44 85% 
4 60 51 85% 
5v 55 49 89% 
5h 53 44 83% 
Total 283 242 86% 

Table 2: Tag transfer performance on correctly retrieved images across datasets. 

Of the images that were tagged, the homography tag transfer method was able to 

accurately transfer text information onto a query image from a matched database image 

for 242 out of 283 images. Of the cases where the tag was not projected correctly onto the 

query image, several were situations where the query image captured an opposing street 

corner and therefore contained more than one dominant plane in the image. A subset of 

the images retrieved and tagged by our system is shown in Figure 11. 
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Figure 11: Select query and match pairs with projected tags. For each image pair, the 

left image is the query and the right image is the corresponding retrieved image from the 

database. Incorrect image matches are highlighted in red. 

5. CONCLUSIONS AND FUTURE WORK 

In the report, we have presented a method for large scale retrieval against large sets of 

geo-tagged images using coarse location information. Using the retrieved image, a 

homography matrix can be used to project tag information onto the user generated query 



26 
 

image in a pixel accurate fashion. Since our local search cells are relatively small, we 

have opted to use a feature-match-vote recognition scheme. However with more densely 

distributed image sets, or larger errors in reported versus actual location estimates, such a 

local search method might not scale, and more scalable retrieval structures might be 

needed. Similarly, because images of urban buildings typically contain a single dominant 

plane, a homography model was an appropriate fit. In situations where there are multiple 

planes in the image, such a model would not work. Future work involves exploring other 

feature descriptors and preprocessing methods as well as recovering the user’s 6 degrees 

of freedom pose information. 
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8. APPENDIX 

8.1 Appendix A: SCE Equivalence 

In this appendix we show that every “ambiguity circle” of radius less than 𝑔 is fully 

contained by at least one cell in the cell grid of Figure 3(a) if and only if a circle of radius 

𝑔 can be fully contained within the region of intersection of three adjacent cells. 

Letting 𝐶 represent the set of all cells, 𝐴 represent the set of all circular ambiguity 

regions, and Δ(𝑎, 𝑐) denote the Euclidean distance between the centers of cell 𝑐 and 

ambiguity circle 𝑎, the SCE condition described in Section 2.1 can be stated as such: 

∀ 𝑎 ∈ 𝐴:𝑎𝑟𝑎𝑑𝑖𝑢𝑠 ≤ 𝑔 ∃ 𝑐 ∈ 𝐶 Δ(𝑎, 𝑐) ≤ 𝑟 − 𝑔 

We will show that for any given value of 𝑔 in our cell arrangement, 𝑆𝐶𝐸 is satisfied if 

and only if a circle of radius 𝑔 can be fully contained within the region of intersection of 

three adjacent cells whose centers form an equilateral triangle of side length d. For 

convenience, we will refer to this second condition as Three Cell Containment, or 𝑇𝐶𝐶: 

∃𝑎 ∈ 𝐴:𝑎𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑔  ∃𝑐1, 𝑐2, 𝑐3 ∈ 𝐶: 𝑐1 ≠ 𝑐2 ≠ 𝑐3, ∧i=1,2,3 Δ(𝑐𝑖,𝑎)

≤ 𝑟 − 𝑔,∧i,j=1,2,3 i≠j Δ�𝑐𝑖, 𝑐𝑗� = 𝑑8 

Thus, our goal is to show that 𝑆𝐶𝐸 implies 𝑇𝐶𝐶 and vice versa, i.e. 𝑆𝐶𝐸 ↔ 𝑇𝐶𝐶. 

We show 𝑆𝐶𝐸 → 𝑇𝐶𝐶 by contradiction: 

                                                 
8We use the notation ∧i=[X] 𝑌 to denote a preposition that is true if and only if 𝑌 is true 
for every case in 𝑥, ∨i=[x] 𝑌 to denote a preposition that is false if and only if 𝑌 is false 
for every case in 𝑥, and ¬𝑌 to denote the preposition that is true if and only if  𝑌 is false. 
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1) Assume 𝑆𝐶𝐸 holds for some values of 𝑔, 𝑟. 

a) This means that every ambiguity circle 𝑎 with radius 𝑔 is fully contained by at 

least one cell. 

2) Assume¬𝑇𝐶𝐶: 

∀𝑎 ∈ 𝐴:𝑎𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑔 ∀𝑐1, 𝑐2, 𝑐3 ∈ 𝐶: 𝑐1 ≠ 𝑐2 ≠ 𝑐3  ∨i=1,2,3 ¬Δ(𝑐𝑖,𝑎)

≤ 𝑟 − 𝑔 ∧i,j=1,2,3 i≠j Δ�𝑐𝑖, 𝑐𝑗� = 𝑑 

3) Let 𝑎’ be a circle of radius 𝑔 centered at the centroid of an equilateral triangle in 

the lattice, such as in Figure 3(b). From (1) we know that there is at least 1 cell 

that fully contain 𝑎′. 

4) Because 𝑎’ is placed at the center of the equilateral triangle whose vertices are 

also cell centers, from symmetry we know that if one cell contains 𝑎’, the two 

other cells whose center lie on the vertex of the equilateral triangle must also fully 

contain 𝑎′. 

5) This contradicts (2) which specify that there does not exist any ambiguity circle of 

radius 𝑔 that can be fully contained by three cells. 

6) By contradiction, 𝑆𝐶𝐸 → 𝑇𝐶𝐶. 

Let 𝑆𝐶𝐸𝑒𝑞  be the 𝑆𝐶𝐸 condition with a strict equality on the ambiguity radius: 

∀ 𝑎 ∈ 𝐴:𝑎𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑔 ∃ 𝑐 ∈ 𝐶 Δ(𝑎, 𝑐) ≤ 𝑟 − 𝑔 
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Our approach to showing 𝑇𝐶𝐶 → 𝑆𝐶𝐸 is to break it up into two parts: First, we show that 

𝑆𝐶𝐸𝑒𝑞 → 𝑆𝐶𝐸 and then show that 𝑇𝐶𝐶 → 𝑆𝐶𝐸𝑒𝑞. By combining these two results, we 

can then conclude that 𝑇𝐶𝐶 → 𝑆𝐶𝐸. 

Let us now show that 𝑆𝐶𝐸𝑒𝑞 implies 𝑆𝐶𝐸. We note if every ambiguity circle of radius 𝑔 

can be contained by at least one cell, then it must hold that every ambiguity circle of 

radius 𝑔’ < 𝑔 can also be contained by at least one cell. Therefore, 𝑆𝐶𝐸𝑒𝑞 → 𝑆𝐶𝐸. 

We show 𝑇𝐶𝐶 → 𝑆𝐶𝐸 by means of showing 𝑇𝐶𝐶 → 𝑆𝐶𝐸𝑒𝑞 by contradiction: 

1) Assume 𝑇𝐶𝐶 holds for some values of 𝑔, 𝑟. 

2) For some ambiguity circle 𝑎1 of radius 𝑔, let 𝑐1, 𝑐2, 𝑐3 denote the three distinct 

cells with ∧i=1,2,3 Δ(𝑐𝑖,𝑎1) ≤ 𝑟 − 𝑔 as implied by (1). 

3) We note that due to the symmetry of our cell layout grid, it is possible to restrict 

our analysis to the equilateral triangle formed by the centers of these three cells. 

4) Assume ¬𝑆𝐶𝐸𝑒𝑞: 

∃𝑎 ∈ 𝐴:𝑎𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑔∀𝑐 ∈ 𝐶, ¬Δ(𝑎, 𝑐) < 𝑟 − 𝑔 

5) This means that there exists some ambiguity circle 𝑎2 with radius 𝑔 that is not 

fully contained by any cell. 

6) Since both 𝑎1 and 𝑎2 have radius 𝑔, it must be the case that either 𝑎1 = 𝑎2 or 

𝑎1 ≠ 𝑎2. 

7) If 𝑎1 = 𝑎2, then we know from (1) that 𝑎2 is contained in at least 3 cells, which 

contradicts with (4). 
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8) If 𝑎1 ≠ 𝑎2, then 𝑎2 must lie some distance away from 𝑎1in the equilateral triangle 

defined in (3). 

9) Since the vertices of this equilateral triangle correspond to the centers of cells 

𝑐1, 𝑐2, 𝑐3, it must be the case that 𝑎2 is closer to one of 𝑐1, 𝑐2, 𝑐3: ∃𝑐𝑎 ∈

{𝑐1, 𝑐2, 𝑐3}:Δ(𝑐𝑎,𝑎2) < Δ(𝑐𝑎,𝑎1). 

10) Since ∧i=1,2,3 Δ(𝑐𝑖,𝑎1) ≤ 𝑟 − 𝑔, it must be the case that Δ(𝑐𝑎,𝑎2) < 𝑟 − 𝑔, which 

contradicts (4). 

11) By contradiction, 𝑇𝐶𝐶 → 𝑆𝐶𝐸𝑒𝑞. 

Thus we have shown that 𝑇𝐶𝐶 → 𝑆𝐶𝐸𝑒𝑞. Since we have earlier shown that 𝑆𝐶𝐸𝑒𝑞 →

𝑆𝐶𝐸, we can combine these two results to conclude that 𝑇𝐶𝐶 → 𝑆𝐶𝐸. 
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8.2 Appendix B: RANSAC Homography and Fundamental Matrix calculations 

1) Interest points: Compute interest points in each image. 

2) Putative correspondences: Compute a set of interest point matches based on 

proximity and similarity of their intensity neighborhood. 

3) RANSAC robust estimation: Repeat for N samples, where N is determined 

adaptively. 

a. Select a random sample of 4 (7 for Fundamental Matrix) 

correspondences to generate a candidate Homography H (Fundamental 

Matrix F). 

b. Calculate the distance 𝑑⊥for each putative correspondence. 

c. Compute the number of inliers consistent with H (F) by the number of 

correspondences for which 𝑑⊥ is less than a set threshold of pixels. 

Choose the H (F) with the largest number of inliers. In the case of ties 

choose the solution that has the lowest standard deviation of inliers. 

4) Estimation: re-estimate H (F) from all correspondences classified as inliers, by 

minimizing a cost function using the Levenberg-Marquardt algorithm. 

5) Guided matching: further interest point correspondences are now determined 

using the estimated H (F) to define a search region. 

Source: Multiple View Geometry in Computer Vision by Hartley and Zisserman 
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