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Abstract—Attics are one of the largest sources of energy
loss in residential homes, but they are uncomfortable and
dangerous for human workers to conduct air sealing and
insulation. Hexapod robots are potentially suitable for carrying
out those tasks in tight attic spaces since they are stable,
compact, and lightweight. For hexapods to succeed in these
tasks, they must be able to navigate inside tight attic spaces
of single-family residential homes in the U.S., which typically
contain rows of approximately 6 or 8-inch tall joists placed
16 inches apart from each other. Climbing over such obstacles
is challenging for autonomous robotics systems. In this work,
we develop a perceptive walking model for legged hexapods
that can traverse over terrain with random joist structures
using egocentric vision. Our method can be used on low-cost
hardware not requiring real-time joint state feedback. We train
our model in a teacher-student fashion with 2 phases: In phase
1, we use reinforcement learning with access to privileged
information such as local elevation maps and joint feedback.
In phase 2, we use supervised learning to distill the model
into one with access to only onboard observations, consisting
of egocentric depth images and robot orientation captured
by a tracking camera. We demonstrate zero-shot sim-to-real
transfer on a Hiwonder[1] SpiderPi robot, equipped with a
depth camera onboard, climbing over joist courses we construct
to simulate the environment in the field. Our proposed method
achieves nearly 100% success rate climbing over the test courses,
significantly outperforming the model without perception and
the controller provided by the manufacturer.

I. Introduction
Attics are one of the largest sources of energy loss in

residential homes. A typical unfinished attic is shown in Fig.
1(a). A substantial reduction in home energy costs and its
carbon footprint can be achieved through attic air sealing and
insulation. However, it is usually difficult, uncomfortable, and
potentially dangerous for workers to carry out these tasks.
For example, since attics typically consist of multiple rows
of joist structures, a human worker could easily fall through
the attic floor and get seriously injured if he or she steps on
the sheetrock between two joists by mistake. Workers may
also need protective suits to protect themselves from toxic
substances during vacuuming and spray foaming, which are
common tasks for air sealing and insulation.

Lightweight legged robots are ideal platforms for navigat-
ing inside attics to carry out various tasks such as air-sealing
and vacuuming. To do so, we need to enable legged robots
to traverse in environments with dense and high joists. Since
most single-family residential home attics in the U.S. contain
approximately 6 or 8-inch high joists that are 16 inches apart,
it is important for legged robots to be able to autonomously
climb such joists inside attics.
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(a) Unfinished attic

(b) Time-lapse photo of SpiderPi climbing over joists

Fig. 1: (a): Photo of an unfurnished attic with joists. (b):
Time-lapse photo capturing the SpiderPi robot climbing over
8 joists using the method proposed in our work.

There has been a significant amount of work on
quadrupeds and bipedal robot locomotion. However, in this
work, we focus on using hexapods for joist climbing for two
main reasons. First, hexapod robots are by design more stable
and lightweight than quadrupeds and humanoids of similar
size. Secondly, bipedal or quadruped robots are often taller
than hexapods from the ground and are therefore less suitable
for traversing within tight spaces such as the corners of attics.

To facilitate the practical usage of robots in the retrofit
business, it is important for legged locomotion controllers
to work with low-cost hardware. However, most existing
legged locomotion systems require high-end robots capable
of real-time sensing of joint states, which could ultimately
result in expensive hardware. For example, model predictive
control methods such as [6] require powerful computation
resources and real-time joint feedback from expensive robot
platforms and often compromise real-time performance when
incorporating more complex dynamics. Data-driven methods
such as [2] can work with limited computation resources and
are robust to a variety of perception failures but need fast
joint state feedback. Many low-cost robots are not equipped
with powerful onboard computation or real-time feedback
such as joint torque and angle that are accessible on more



expensive platforms. Meanwhile, humans without leg sensing
feedback when equipped with prosthetics can walk and even
participate in competitive sports with only egocentric visual
perception and a sense of body orientation [25].

(a) Physical Robot (b) URDF

(c) Joint Structure

Fig. 2: (a): The SpiderPi hexapod robot used in our work,
with Intel L515 and T265 mounted onboard. (b): URDF
model of SpiderPi robot we create for training. (c): Joint
structure of SpiderPi hexapod.

In this paper, we propose an end-to-end learning-
based perceptive controller for low-cost, sub-thousand-dollar
hexapods to autonomously climb over joists and demonstrate
zero-shot sim-to-real transfer on joist terrain with configu-
rations similar to the ones in typical attics. Our robot is a
$600 SpiderPi robot manufactured by Hiwonder, shown in
Fig. 2(a), equipped with an Intel L515 depth camera and
a T265 tracking camera with a customized camera mount.
The robot does not have real-time joint feedback. The whole
system including the sensors costs less than $1500. We
propose a two-stage teacher-student training procedure to
learn models that can work without real-time joint feedback:
the first stage involves Reinforcement Learning (RL) with
access to privileged observations and the second stage uses
supervised learning to distill the model using only onboard
observations including body orientation and egocentric depth
images. Since optimal joist climbing motions are funda-
mentally different from walking, we train our controllers
without human-defined prior gait knowledge, guiding the
models to explore task-appropriate motions. We compare our
method to a few baselines including end-to-end training of
a blind model and a hand-designed controller. Our proposed
method significantly outperforms both by achieving a much
higher success rate climbing over joists and higher speed. In
addition, we study the design of the privileged information
during phase 1 training and find that it is critical to include
information such as joint feedback even though it is not
available onboard. A time-lapse photo of using our proposed
method to control the robot climbing over 8 joists with 6-inch
height and 16-inch spacing is presented in Fig. 1(b).

II. RELATED WORK

A. Hexapods Legged Locomotion on Challenging Terrain
Hexapod robots traversing challenging terrain have been

studied for decades. In 1990, [19] proposed a set of rules to
control and navigate a hexapod robot. In [12], Frankhauser
et al. developed a ROS library for navigating a hexa-
pod or quadruped using elevation map. Shortly after that,
Frankhauser et al. demonstrated solid results by deploy-
ing their method on a quadruped in [10]. [6] proposes
a method to control hexapods on unstructured terrain us-
ing combination of exteroceptive and proprioceptive terrain
characterization. Faigl et al. [9] use only position feedback
to let a hexapod walk on uneven terrain. [21] proposes a
teleoperator for hexapods under environmental perturbations.
[8] improves passability of gait selection on sparse foothold
environments using a Monte Carlo tree search algorithm.
[30] proposes an adaptive hexapod controller using a force
sensing pipeline. However, these methods are only capable of
managing explicitly modeled uncertainties and therefore are
not suitable for tackling uncommon terrains. To overcome
this, data-driven methods are proposed by Li et al. in [22]
and Qiu et al. in [26]. [4] enables hexapods to traverse rough
terrain in simulation using binary contact sensors on feet
endpoints. [20] uses RL to train a central pattern generator
with spiking neural networks. However, there is no existing
work showing a hexapod robot traversing challenging terrains
using a learned controller. Our work adopts end-to-end
learning without any human-defined gait prior knowledge,
allowing the agent to be deployed on inexpensive hexapods
and to perform reliably on joist structures.

B. Legged Locomotion with Perception
For a legged robot to efficiently climb high obstacles such

as joists, it must be equipped with a perception system to
identify and step over the obstacles. To incorporate percep-
tion in legged locomotion, most previous model-based meth-
ods first convert raw input from depth cameras or LiDARs
into other forms such as local elevation maps; they then use
elevation maps to evaluate local areas for foothold feasibility
[28], [15], [24], [11], [3], [18], [16], [27] or traversability
[7], [13]. These methods assume perfect conversion from
raw sensor data to a desired form such as an elevation
map. Conversion to elevation map is computation intensive,
requiring expensive and heavy compute engines that must
be carried by the robot. Recent data-driven approaches map
from perception input directly to actions. Specifically, [29]
proposes a method for quadrupeds to walk on complex
terrain by predicting actions directly from depth captured
onboard and executing actions with a model predictive con-
troller. [14] trains an end-to-end controller that maps from
depth images to motor commands and demonstrates the robot
traversing various terrains in simulation. [23] proposes a
method to produce high-level commands for jumping over
gaps. In [2], Agarwal et al. use egocentric depth to directly
predict joint angles. However, to work on actual robots, these
methods need high-frequency state feedback provided by



Fig. 3: High-level overview of our method.

costly hardware. In contrast, in this work, we incorporate
visual perception on low-cost hardware without access to
real-time joint states.

III. OVERALL APPROACH
In this section, we present our overall approach, including

the choice of hardware, training strategy, and ways to retrieve
the robot model used for training. We use a $600 SpiderPi
hexapod robot, shown in Fig. 2(a), which has a standing
height of approximately 15cm without our custom-designed
camera mount, 30cm with the mount, and weights around
2.4 kilograms. The onboard computer on our robot is a
Raspberry Pi 4B with 4GB of RAM, 4 CPU cores, and 1.5
GHz clock rate. As shown in Fig. 2(c), the robot has six
legs with three degrees of freedom per leg, each actuated
by a LX-224HV three-port bus servo. Each servo provides
a maximum of 1.96 Nm of torque and 5.24rads of angular
velocity.

Even though we train fully in simulation, there are no
models to simulate the motors reliably since our robot uses
actuators with unknown dynamics. Unlike actuators in high-
end robots that allow the reading and writing of Proportional
Derivative (PD) controller gains, PD control is performed at
the circuit level on LX-224HV by modulating motor voltage
with unknown gains that cannot be modified. As a result, we
use position control, which is physically less accurate. As
depicted in Fig.3, during training, the model outputs desired
joint angles at which are converted to joint torques τt and
fed into motors in the simulation engine. When deployed on
hardware, the joint angles are directly used as angle targets
for servo motors on the actual robot with unknown dynamics.

We train our model using a teacher-student training
scheme with two phases to target zero-shot sim-to-real trans-
fer. The first phase is trained with access to privileged obser-
vations using reinforcement learning and the second phase
is trained with only access to observations onboard. There
are two reasons for having two training phases: First, depth
rendering with current simulation significantly slows down
simulation speed. Specifically, reinforcement learning takes
a large number of samples to converge, so it is impractical
to directly train perceptive models with depth sensing using
reinforcement learning. Secondly, unlike actuators used on
robots in high-end robots that have real-time joint feedback
including position, velocity, and even torque, our servo

State Element Constituents Units Noise Range
Base attitude ot={roll, pitch, yaw} Radians [−0.1,0.1]

Joint positions* qt ∈ R18 Radians [−0.01,0.01]
Previous actions at−1 ∈ R18 Radians [0,0]
Elevation Map* ht ∈ R221 Meters [0.1,0.1]
Depth Image dt ∈ R320∗240 Meters [0.1,0.1]

TABLE I: Constituent elements of the state. * denotes
privileged observations that are only available during phase
1 training.

positions are written to and read from joints through a shared
serial port. This prohibits parallel access, so all joints are
read and written to in serial, with wait times in between to
clear the bus. One loop reading the position of all the joints
can take multiple seconds, making it impossible to use them
as real-time inputs to a controller. Similar to the case in [17],
training without joint position feedback from scratch yields
suboptimal performance, so we have to include joint feedback
in phase 1 and distill it in phase 2. As a result, the model
trained in phase 1 has access to joint angle feedback, body
orientation, and elevation maps sampled around the robot.
In phase 2, a student model with depth images as perception
input learns from the model trained with elevation maps in
phase 1 and takes body orientation as the only source of
proprioception feedback. As we show later, models trained
with no joint feedback in phase 1 achieve much lower reward
than our proposed method.

Since there is no available 3D model of our robot, we
measure the length and weight of each leg segment and
approximate the robot segments using boxes to build a URDF
model for training in simulation, as shown in Fig. 2(b).

IV. METHOD

In this section, we describe our training method in more
detail. We follow a teacher-student training scheme with
two phases, with reinforcement and supervised learning as
the first and second phases respectively. Since we directly
deploy models trained from phase 2 on actual hardware, we
incorporate several techniques to ensure the performance of
zero-shot sim-to-real transfer.

A. Training Setup
We conduct training in IsaacGym simulator [5]. We first

train on an easier rough terrain with randomly generated low
joist courses, shown in Fig. 4(a), arranged to give rise to a
learning curriculum similar to [5]. Then we fine-tune the
model on a terrain that closely mimics the joists pattern in
the field, as shown in Fig. 4(b).

We leverage parallel simulation training for our policies
[5]. The state space is listed in Table I with corresponding
units. Uniform random noises with listed ranges are added
to the elements. At each time step, the perception input pt ,
either an elevation map or a depth image, is first encoded by
the perception head Ep into perception feature ft :

ft = Ep(pt) (1)



(a) Rough terrain (b) Joist terrain

Fig. 4: Simulated terrains for training. (a): easy terrain. (b):
difficult terrain.

Then the state st = [xt , ft ], resulting from the proprioception
information xt and perception feature ft , are fed into the
observation encoder Eo to produce a latent vector zt :

zt = Eo(st) (2)

Then the encoded feature zt is passed to the policy π that
predicts the joint angles at :

at = π(zt) (3)

Our observation encoder Eo is a 1-layer LSTM with
hidden size 64 and a CNN or MLP as perception head to
extract features from perception input. The recurrent nature
of the observation encoder enables the model to remember
past observations and incorporate salient information into
zt , making it possible to traverse challenging terrain using
proprioception and learn to overcome obstacles captured by
egocentric vision. Our policy is an actor-critic with both
actor and critic as a 3-layer MLP with hidden layers of size
128, 64, and 32. Exponential linear unit activation is used
between the layers. We train the model in simulation with
frequency of 25Hz. The simulation time step is set to 0.005
second and the simulation steps 8 times per model iteration.
Even though the lightweight nature of our robot is useful in
our application, its low inertial links require small time steps
in simulation and hence long training times. Therefore, we
have found it necessary to increase the number of substeps
of the physics engine per simulation step from 1 to 4 to
simulate physics accurately.

B. Phase 1: Reinforcement Learning
In phase 1, we train the model using the open-source

implementation of Proximal Policy Optimization from [5].
The elevation map sampled around the robot is used as
perception input in phase 1. As mentioned in [2], a critical
step is to find the optimal elevation map configuration such
that the elevation map does not contain information that
cannot be inferred from the depth images used in phase 2
training. To achieve this, we start with a rough estimation
of the ground area that the depth images on the actual robot
capture. With the hardware configuration shown in Fig. 2,
we consider a scenario with the robot standing still and
the camera pointing at 30 degrees downward with FOV
provided by L515 intrinsic information, and compute the
projection area of the camera’s view based on geometry. We
then search elevation map configurations close to the rough

projection area and use the one with the lowest phase 2 loss.
This approach has been shown in [2] to result in optimal
performance. The final elevation map is sampled from a 0.6m
× 0.8m grid that is 0.3m in front of the robot with a sample
spacing of 0.05m, resulting in a 13 × 17 elevation map.

Our reward is the weighted sum of the elements in Table
II. This reward is shaped over multiple experiment cycles, be-
ginning with only the linear velocity in body x term to incen-
tivize forward motion. The linear velocity in body y and an-
gular velocity yaw terms disincentivize sideways motion and
turning to keep the agent on a straight line. Ground impact is
added after initial real-world rollouts reveal the agent’s ten-
dency to let its feet collide harshly with the ground, damaging
the hardware. The action rate, action magnitude, torque, and
joint acceleration penalties are all added as regularizers to
constrain the actions to behave in ways that are deployable
on real hardware, instead of learning on-off control schemes
that would burn out the motors or command impossible joint
positions. We also incorporate the end effector height penalty
since we observe the trained policies tend to raise the robot’s
end effctors high up in the air.

A one-layer MLP is used in phase 1 as perception head
Ep of the observation encoder to encode elevation map ht .
During phase 1, proprioception information xt consists of
base orientation ot , joint angles qt , and the previous action
at−1. Therefore, the state st has the following form:

st = [ot ,qt ,at−1,Ep(ht)] (4)

Models are first trained with the easier terrain shown
in Fig. 4(a) and then tuned on the terrain with high and
dense joists shown in Fig. 4(b), which is more difficult but
more closely mimics the environment in the field. On each
terrain, we use 4,000 robots simulated in parallel and train for
8,000 iterations, with 24 timesteps for all agents per iteration.
96,000 transition samples are created during each iteration
and are split into 4 mini-batches with sizes of 24,000 each.
To ensure the robustness and stability of the learned gait, we
randomize the friction coefficient of each robot in the range
[0.5, 1.25], and apply pushes in random directions to each
robot’s base mass every 8 seconds.

C. Phase 2: Supervised Learning for Sim-to-Real
In phase 2, we use supervised learning to train the model

with access to only proprioception and perception available
onboard, supervised by a teacher model trained in phase 1.
For the student model during phase 2 training, proprioception
information x̂t consists of base attitude ot , previous action
at−1, and egocentric depth image dt as perception input. The
state ŝt for the student model then has the following form:

ŝt = [ot ,at−1,Ep(dt)] (5)

Only the observation encoder and its perception head are
trained from scratch, with the policy being initialized with
the trained policy weight from phase 1. Fig. 5 shows the
phase 2 training process. We supervise the student encoder’s
ẑt with the teacher encoder’s zt , and student policy’s ât with
the teacher policy’s at . In other words, we train the student



Reward Term Expression Weight
Linear velocity in global x clip(vx,min =−0.4,max = 0.4) 1e2
Linear velocity in body y v2

y -1e1
Global heading θ 2 -3e1

Angular velocity: yaw ω2
z -1e0

Ground impact ∥ ft − ft−1∥2 -1e-1
Collision penalty 1{coxa, femur, or base contacting terrain} -1e0

Action rate ∥at −at−1∥2 ·-5e-1
Action magnitude ∥at∥2 -1e-2

Torques ∥τ∥2 -1e-3
Joint acceleration ˆ̈q2 =

q̇t−q̇t−1
∆t

2
-1e-5

Joint limit penalty clip(qmin −qt ,max = 0)+ clip(qt −qmax,min = 0) -1e0
End effector height

∥∥zend_e f f ector
∥∥ -1e1

TABLE II: Constituent elements of the multi-objective reward during phase 1 training.

Fig. 5: Block diagram for phase 2 training.

encoder and policy to recover the same zt and at , using the
more limited observation set, by optimizing the following
loss, as demonstrated in Fig. 5:

Lphase-ii = MSE(zt , ẑt)+MSE(at , ât) (6)

We also need to consider the sim-to-real gap of depth per-
ception in order to successfully deploy the model trained in
phase 2 on hardware. Depth images retrieved from Isaacgym
are nearly perfectly simulated, which is not the case for our
actual depth sensor. Since our robot is close to the ground
and the distance between the depth camera and the ground is
not too large, in order to obtain the best depth quality for near
objects, we operate the onboard depth camera in low ambient
light mode. By doing so however, far-away pixels often end
up with invalid measurements. Moreover, since we do not
have an exact 3D model of the robot and we approximate
segments of the robot with boxes when the robot legs are
within the view of the depth camera, there is a domain gap
between the simulation and actual depth images.

To address the issue of front legs being inadvertently
captured in the actual captured depth images, we mask out
all the areas that could possibly be occupied by the legs with
all physically possible joint angle combinations. The masked-
out areas are presented as the white areas in Fig. 6(a). An
overlay image of the leg mask on an egocentric depth image
with the leg in view is shown in Fig. 6(b), with part of the

robot leg captured by the depth camera is shown in the lower
right corner and the highlighted area at the bottom corners
being masked out.

To deal with the pixels in actual depth images that are
invalid due to range, we randomly mask out pixels in
simulated depth images based on the following probability:

pinvalid =
exp(min(dbound ,d))

exp(k)
(7)

In the above expression, k is set to be the approximate upper
bound of depth values for the majority of pixels on actual
hardware. dbound exists to make sure the probability of a pixel
being masked out does not exceed 1, since we do not wish to
mask out all pixels beyond a certain distance, dbound < k. An
example depth image captured in simulation is visualized in
Fig. 6(c). The image with pixels being randomly masked out
according to their depth values is shown in 6(d), with black
pixels corresponding to the pixels that are masked out. To
determine an appropriate range for k, we walked the robot
around with the depth camera mounted using the built-in
Hiwonder controller and plot the distribution of valid pixel
values in multiple randomly selected captured depth images,
shown in Fig. 6(e), and identified the range of k to be 3 based
on collected depth data. We then tune dbound to yield the
best zero-shot sim-to-real performance. We find dbound = 2
to result in the best performance.

Phase 2 training is only conducted on the more difficult
joist terrain environment to emphasize the trained model’s
ability to adapt to the environment in the field. Due to the
compute intensity of depth retrieval in simulation, we only
simulate 100 robots in parallel. We train the model for 2,000
iterations using Adam optimizer and learning rate of 5e-4.

V. EXPERIMENTS

To evaluate the performance of our method, we deploy
our proposed method, a blind version of our method, and the
controller provided by the manufacturer, on a SpiderPi robot
and have it climb over joist courses we have constructed to
mimic attic environments. We also conduct ablation studies
to investigate our design choices for sim-to-real transfer.



(a) Leg Mask (b) Overlay of leg mask

(c) Example depth image (d) Depth-based mask

(e) Depth Distribution on L515

Fig. 6: Techniques used in depth image processing. (a): Mask
used to avoid the legs being captured. (b): Overlay of the leg
mask on an egocentric depth image with the leg in view, with
the highlighted area at the bottom corners masked out. Part
of the robot leg captured by depth camera is visible at the
lower right corner. (c): An example depth image captured
in simulation. (d): Depth image in (c) with pixels randomly
masked out according to depth value. (e): Distribution of
depth value captured by L515 mounted on the robot.

A. Test Setup

To evaluate the robot’s ability to traverse joists similar to
the ones in attics, we construct a testing ground using wood
joists with 2-inch thickness and 6-inch height. We construct
a 4-joist and a 8-joist courses. Joists are arranged in a
pattern with 16-inch center-to-center gap. The 8-joist course
is shown in Fig. 1(b). We test the walking controllers by
having the robot traverse in the direction that is perpendicular
to the joists for multiple trials. The time limit to complete
each trial is set to be 30 seconds for the 4-joist course and
60 seconds for the 8-joist course. The performance of each
method is evaluated using two metrics: the average number
of joists the robot successfully climbs over in each trial, and
the average time it takes for the robot to climb over each
joist. Success is defined as the entire body and all the legs
of the robot passing over the joist. The time interval between
passing the previous joist to passing the current joist is taken
as the time to climb the current joist. We only interrupt a
trial if the robot falls over and cannot recover on its own.

B. Performance on Actual Hardware

For comparison, we also train a blind model and use it
without the depth camera. The training process of the blind
model is the same as the perceptive policy, except that it
does not have access to any perception information, without
a perception head on the observation encoder. The blind
model also takes body orientation as proprioception, so only
the T265 tracking camera is attached to the robot when
using the blind model. We compare the performance of our
perceptive model to both the blind model and the walking
controller provided by HiWonder. All models are deployed on
a low-cost Raspberry Pi 4B with 4GB of RAM. Experimental
results are presented in Table III. When tested on the 4-joist
course over 10 trails, the perceptive model achieves a 100%
success rate climbing over all joists within the given time,
and uses around 3.7 seconds to climb over each joist. When
tested on the 8-joist course, the perceptive model climbs over
7.8 joists per trail on average, and uses around 3.4 seconds
to climb over each joist. In the only failed trial, the robot
makes it very close to the end. It loses balance as it pitches
up and falls over. An example video of the robot traversing
over the 8-joist course is shown in this video link.

The blind model manages to climb over 1.8 joists in
each trial on average and uses slightly more time than the
perceptive model to climb over each joist. However, the blind
model learns gaits with high impact and with its front legs
raised high in the air even when there are no joists present in
front of the robot. This is because it does not have access to
any source of perception to interpret the appropriate action
magnitude. The controller from Hiwonder is not capable of
climbing over any joists over all the trials.

To further test the robustness of our proposed method,
we test the robot approaching and climbing over the 4-joist
course at a 45-degree angle for 10 trials. We find that it
successfully climbs over the joist course in 9 of the 10 trials,
as shown in this video.

We also test the proposed perceptive model with a 12-inch
high joist course to determine its behavior when encounter-
ing obstacles that are physically too high to climb over. We
find that the robot stops moving once it gets close to the
joists. This is expected since the depth camera view is fully
blocked by the high obstacle, and such a scenario is seldom
encountered during training.

C. Ablation Studies

1) Depth Processing Techniques: In previous sections,
we presented two depth image preprocessing techniques to
enable zero-shot sim-to-real transfer. To evaluate the impact
of these techniques, we conduct an ablation study where we
compare the performance of the perceptive model trained
with depth images preprocessed using (a) both leg masking
and random invalid pixel, (b) without leg masking, (c)
without random invalid pixels, and (d) without both. When
deploying a model trained without leg masking on hardware,
we do not apply leg masking to depth images to match the
depth processing used during training.

https://youtu.be/OBjRWEoQPww
https://youtu.be/AYu7XoObaYo


4 joists 8 joists
Method Average #Joists Average Time / Joist (s) Average #Joists Average Time / Joist (s)

Perceptive (Ours) 4 3.7 7.8 3.4
Blind 1.8 3.8 1.9 4.1

HiWonder Controller 0 N/A 0 N/A

TABLE III: The average number of joists that each model successfully climbs over, and the average time for models to climb
over each joist, evaluated on the proposed perceptive model, the blind model, and the controller provided by Hiwonder. The
Hiwonder Controller cannot climb over any joist, therefore does not have a valid measurement of time per joist.

4 joists 8 joists
Method Average #Joists Average Time / Joist (s) Average #Joists Average Time / Joist (s)

Perceptive 4 3.7 7.8 3.4
w/o leg mask 0 N/A 0 N/A

w/o random invalid 1.3 6 1.5 6.1
w/o both 0 N/A 0 N/A

TABLE IV: The average number of joists that each model successfully climbs over, and the average time for models to climb
over each joist, evaluated on the perceptive models trained with (a) both leg masking and random invalid depth pixels, (b)
without leg masking, (c) without random invalid depth pixels and (d) without both. The models trained without leg masking
do not successfully climb over any joists, therefore do not have a valid measurement of time per joist.

Experimental results are presented in Table IV. We ob-
serve that models trained and deployed without leg masking
behave abnormally as soon as legs are captured by depth
camera during climbing, and are not capable of climbing
over any joists. This is likely due to the domain gap presented
between the depth image of the actual robot legs and the legs
in the approximate robot model. The model using only leg
masking but not random invalid pixels makes some progress
and climbs over joists, but gets stuck or falls over quite
often. It is able to climb around 1.3 joists before it fails and
takes around 6 seconds on average to successfully climb over
each joist. Also, it never finishes a single trail. This proves
the effectiveness of our proposed depth-based pixel masking
technique to reduce the domain gap between depth images
in simulation and captured by the actual L515 sensor.

2) Phase 1 without Joint Feedback: One of the main rea-
sons we divide training into 2 phases is to learn an effective
expert policy with access to privileged state feedback. To
prove the necessity of having access to joint state feedback in
phase 1, we compare training performances between models
with and without access to joint angle feedback, as shown
in Fig. 7. As seen in Fig. 7(a), the drop at the middle is due
to curriculum change - the first 8000 iterations of phase 1
training are conducted on lower joist terrain shown in Fig.
4(a) and the second 8,000 iterations on higher joist terrain
in Fig. 4(b). During phase 1, the model with access to joint
angle feedback significantly outperforms the one without
access to joint angle feedback. During phase 2 training, the
student model without access to the joint angle is able to
reach a similar reward as the teacher model with access to the
joint angle. Student model learning from the teacher model
without access to joint angle yields relatively low reward.
This demonstrates the necessity to include critical privileged
joint angle feedback in phase 1 training in order to optimize
the model’s zero-shot sim-to-real performance.

(a) Phase 1 reward with vs without joint angle

(b) Phase 2 reward

Fig. 7: (a): Phase 1 reward curves of models with and without
access to joint angle feedback. (b): Phase 2 reward curves
corresponding to the two models.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an end-to-end approach to

learning a perceptive walking model for low-cost hexapods,
to climb over high and dense joist structures. We also show
zero-shot sim-to-real deployment of models on hardware
in a constructed test environment that closely matches the
proposed use case of our method in attics. Our method
significantly outperforms the baseline methods in terms of
both the number of joists it climbs over within given time and
the average time it takes to climb over each joist. As shown
in our ablation studies, the success of our method’s sim-to-
real transfer is credited to the effectiveness of our proposed



depth image preprocessing techniques and including critical
privileged information during phase 1 training.

Even though our robot’s compactness and low height allow
it to traverse tight spaces, the depth camera mounted elevates
the center of mass of the entire system. There are certain
instances where the robot falls likely due to the instability
related to an elevated center of mass. In the future, we
would like to further improve the stability of our system
by changing the design of our camera mount to lower the
center of mass. This might entail learning a visual legged
locomotion controller with a lower egocentric view.

Using a L515 LiDAR instead of a stereo camera as
the perception sensor allows our robot to operate in dark
environments. However, the T265 tracking RGB camera often
loses track of the robot’s orientation in the dark. This can
be improved by switching our choice of pose sensor from a
tracking camera to IMU.

Although being out of the scope of this work, we wish to
explore letting the robot climb staircases or get around joists
or other obstacles that are too large to climb. Eventually, we
would like to teach the hexapod to perform high-level path
planning in cluttered environments such as attics.
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