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Abstract

We define similar video content as video sequences with almost identical content but possibly com-
pressed at different qualities, reformatted to different sizes and frame-rates, undergone minor editing
in either spatial or temporal domain, or summarized into keyframe sequences. Building a search
engine to identify such similar content in the World-Wide Web requires (a) robust video similarity
measurements, (b) fast similarity search techniques on large databases, and (c) intuitive organization
of search results. In [1], we proposed a randomized technique called the video signature (ViSig) method
for video similarity measurement. In this paper, we focus on the remaining two issues by proposing
a feature extraction scheme for fast similarity search, and a clustering algorithm for identification of
similar clusters. Similar to many other content-based methods, the ViSig method uses high-dimensional
feature vectors to represent video. To warrant a fast response time for similarity searches on high di-
mensional vectors, we propose a novel non-linear feature extraction scheme on arbitrary metric spaces
that combines the triangle inequality with the classical Principal Component Analysis (PCA). We show
experimentally that the proposed technique outperforms PCA, Fastmap, Triangle-Inequality Pruning,
and Haar wavelet on signature data. To further improve retrieval performance, and provide better
organization of similarity search results, we introduce a new graph-theoretical clustering algorithm
on large databases of signatures. This algorithm treats all signatures as an abstract threshold graph,
where the distance threshold is determined based on local data statistics. Similar clusters are then
identified as highly connected regions in the graph. By measuring the retrieval performance against
a ground-truth set, we show that our proposed algorithm outperforms simple thresholding, single-link
and complete-link hierarchical clustering techniques.
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1 Introduction

With ever more popularity of video web-publishing, much video content is being mirrored, reformatted,

modified and republished. Such redundancy creates problems for multimedia search engines in that

the search results become cluttered with a large number of similar versions of the same content. This

degrades the usability of the search engine as studies show that users seldom go beyond the first screen

of search results [2]. Content providers are also interested in using search engines to identify similar

versions of their video content for legal, contractual or other business related reasons. To detect similar

video content on the web, we require an algorithm to be capable of measuring sequences of any length,

be robust against temporal re-ordering, and extremely efficient to execute.

In [1], we have proposed a randomized algorithm called ViSig, aimed at measuring the fraction of

visually similar frames shared between two sequences. ViSig produces a compact representation called

video signature for every video sequence in the database. The size of a signature is determined by the

desired accuracy rather than the length of the video. This makes ViSig suitable to handle sequences

with vastly different durations such as those found on the web. Compared with video similarity mea-

surement schemes based on warping distance [3–5], Hausdorff distance [6], and template matching [7],

the ViSig method does not need to store and examine the entire length of video sequence for similarity

measurement. There are also other video summarization techniques for similarity measurement such

as those based on density parametrization [8–10] or keyframes produced by k-means or k-medoids [6].

Compared with these techniques, ViSig has much lower computational complexity as it requires only

a single pass of a video sequence to compute its signature.

Using an efficient algorithm such as ViSig to measure video similarity is only the first step toward

building a video search engine. Besides similarity measurement, one needs to support fast similarity

search over potentially millions of video signatures, and provide an intuitive organization of the search

results. In this paper, we first propose a similarity search algorithm that takes advantage of how

a video signature is computed and the use of a metric function in comparing two video signatures.

Second, we propose a hierarchical clustering algorithm for a large database of video signatures that is

robust to sampling error introduced by ViSig. Before describing the details of our algorithms, we first

review existing work on fast similarity search and clustering in the following two sections.

1.1 Fast similarity search

When a user presents a query video signature to the search engine, the search engine needs to identify

all similar signatures in the database of possibly millions of entries. The naive approach of sequential
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search is too slow to handle large databases and complex comparison functions. Elaborate data

structures, collectively known as the Spatial Access Methods (SAM), have been proposed to facilitate

similarity search [11–13]. Most of these methods, however, do not scale well to high dimensional metric

spaces used in video search [14]. One strategy to mitigate this problem is to design a transformation

to map the original metric space to a low-dimensional space where a SAM structure can be efficiently

applied.

A good feature extraction mapping should be able to closely approximate distances in the high-

dimensional space using the corresponding distances in the low-dimensional projected space. The most

commonly used feature extraction mapping is Principal Component Analysis (PCA). PCA has been

shown to be optimal in approximating Euclidean distance [15]; a myriad of techniques have also been

developed for generating PCA on large datasets [16]. If the underlying metric is not Euclidean, PCA is

no longer optimal and more general schemes are needed. Multidimensional Dimension Scaling (MDS)

is the most general class of techniques for creating mappings that preserve a high-dimensional metric

in a low-dimensional space [17]. MDS solves a non-linear optimization problem by searching for the

mapping that best approximates all the high-dimensional pairwise distances between data points. In

most occasions, MDS is too complex to be used for similarity search.

There exist other low computational complexity feature extraction mappings for metric spaces. One

such technique is the Fastmap algorithm proposed by Faloutsos and Lin [18]. Fastmap is a heuristics

algorithm that uses Euclidean distance to approximate a general metric. The time complexity for

generating a Fastmap mapping is linear with respect to the size of the database. Another class

of techniques constructs feature extraction mappings based on distances between high-dimensional

vectors and a set of random vectors. These kinds of “random mappings” have been shown to possess

certain favorable theoretical properties. Specifically, [19] and [20] have shown that a specific form

of the random mappings can achieve the best possible approximation of high-dimensional distances.

Unfortunately, such mappings are quite complex, and effectively compute all the pairwise distances. A

more practical version has been proposed in [21] for approximating a metric used in protein sequence

matching. An even simpler version, called Triangle-Inequality Pruning (TIP), has been proposed by

Berman and Shapiro [22] for similarity search on image databases.

In this paper, we propose a novel feature extraction mapping that improves upon TIP by (a) taking

into account both the upper and lower bounds of the triangle inequalities, and (b) achieving any target

dimension using PCA. As we will demonstrate in Section 3.2, our proposed scheme outperforms other

techniques including pure PCA, TIP, Fastmap, and Haar wavelet [23].
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1.2 Similarity clustering

Our proposed similarity search technique enables us to efficiently compute distances between signatures

in a large database. The next step is to use such information to identify clusters of similar video

sequences. The goal is to present similarity search results in terms of similar clusters rather individual

video sequences. This prevents the top search results from being cluttered with similar video sequences

and thus provides more distinctive choices for users. Clustering experiments on web text documents

show that the number of such similar clusters is likely to be very large and highly dependent on the

data [24]. Many popular optimization-based clustering algorithms, such as k-means, require precise

number of clusters as input [25, ch. 13]. To properly determine the number of clusters, a typical

approach is to run k-means multiple times with different number of clusters as input, and then select

the output clustering structure that achieves the highest score as measured by a cluster validation

criterion [26, ch. 2.4]. As each clustering structure is independent of each other, it is computationally

expensive to apply k-means to such a large dataset for so many times. Another popular class of

clustering algorithms, called the hierarchical algorithms, can simultaneously produce a hierarchy of

clusterings [25, ch. 13]. As it is not necessary to recompute the entire clustering structure when

changing the number of clusters, hierarchical algorithms are more suitable for our application.

Given a large database of signatures, we treat each signature as a vertex of a graph, and form

edges between two signatures if their distances, as returned by the fast similarity search, are less than

a certain threshold. Hierarchical clustering algorithms then consider the graphs formed at different

thresholds, and identify parts of the graphs as clusters based on their degree of connectivity. The

simplest of such algorithms are the single-link and complete-link algorithms [25]. The single-link

algorithm identifies all the connected components in the graph as clusters, and the complete-link uses

complete subgraphs. Our experiments indicate that neither algorithm produces satisfactory clustering

results. Single-link produces clusters that consist of totally irrelevant video sequences, while complete-

link ignores many true similar clusters. There are other hierarchical algorithms, such as Ward or

Weighted Pair Group Method Average (WPGMA), that represent compromises between single-link

and complete-link [25]. These algorithms define, in an ad-hoc fashion, a distance function between

two clusters. Nevertheless, none of these distance functions can adequately capture the properties of

signatures and their distance measurement. As ViSig is a randomized algorithm, it is possible for

two similar video sequences to produce signatures that are very far apart. In addition, the proposed

fast similarity search may erroneously discard small distances due to the limitation of the feature

extraction mapping. All in all, there is a need to design a more robust hierarchical clustering algorithm

for signature data.
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In this paper, we propose a new clustering algorithm that allows the user to adjust the level of con-

nectivity for cluster identification. In the proposed algorithm, a connected component forms a cluster

if its edge density exceeds a user-defined threshold. The algorithm is robust to errors in distance mea-

surement, which are usually manifested as missing edges from a fully-connected connected component.

Not only does this algorithm produces favorable retrieval results, but also it admits a simple imple-

mentation based on the classical Minimum Spanning Tree (MST) algorithm by Kruskal [27]. In [28],

Zahn uses MST to separate data into different clusters if the MST branch connecting them is signifi-

cantly longer than the nearby edges [28]. We extend this concept to also consider the connectivity of

the clusters.

The remainder of this paper is organized as follows: in Section 2, we describe our proposed methods

for (a) signature generation, (b) fast similarity search on signatures, and (c) signature clustering.

Signature generation in Section 2.1 is a review of our early work in [1]. In Section 2.1, we also

introduce a procedure to transform similarity search in video signatures into a sequence of similarity

search in a metric space. This is important because our proposed search algorithm in Section 2.2

depends on certain properties of a metric. The search algorithm in Section 2.2 also exploits how a

video signature is generated in forming a low-dimensional “projection vector” used for fast search.

Our proposed clustering algorithm in Section 2.3 does not depend on a metric and is applied directly

on video signatures. Experimental results are provided in Section 3 to demonstrate the performance

of our proposed techniques. Finally, we conclude this paper by discussing future work in Section 4.

2 Algorithms

In Section 2.1, we briefly review the ViSig method to generate signatures and describe a procedure

to perform similarity search on a signature database. A novel algorithm for fast similarity search

on signatures is described in Section 2.2. Finally, we describe our proposed clustering algorithm in

Section 2.3.

2.1 Overview of ViSig and Signature similarity search

We assume that individual frames in a video are represented by high-dimensional feature vectors from

a metric space (F, d(·, ·))1. To every frame, we associate a feature vector, and for convenience, we refer

to the frame and its feature vector interchangeably. The metric d(x, y) is used to measure the visual

dissimilarity between feature vectors x and y. x and y are visually similar if d(x, y) is smaller than a

1 For all x, y in a metric space F , the function d(x, y) is a metric if a) d(x, y) ≥ 0; b) d(x, y) = 0 ⇔ x = y; c)
d(x, y) = d(y, x); d) d(x, y) ≤ d(x, z) + d(z, y), for all z.
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small positive ε, which may depend on the particular feature vectors. Each video sequence X in the

database is represented by a signature XS , defined to be the collection of feature vectors in X that

are closest to a set of seed feature vectors S = {s1, s2, . . . , sm}:

XS
∆
= (gX(s1), gX(s2), . . . , gX(sm)) (1)

where

gX(s)
∆
= arg minx∈X d(x, s)

The seed vectors are feature vectors randomly sampled from a clustered training set that is represen-

tative of the ensemble of target video data under consideration.

The central idea behind the ViSig method is that if two video clips share a large fraction of similar

feature vectors, their signature vectors with respect to the same seed vectors are likely to be similar.

Nonetheless, depending on the relative positions of the seed vectors and the frames, it is possible to

sample non-similar signature vectors from two almost-identical video sequences. To mitigate such er-

rors, in our previous work we have proposed a Ranking Function Q(gX(s)) to determine the robustness

of a signature vector gX(s) [1]:

Q(gX(s))
∆
= min

x∈X, d(x,gX(s))>εC

d(x, s) − d(gX(s), s). (2)

where εC is the maximum distance between similar vectors within the video. We have shown that

the larger Q(gX(s)) is, the more robust gX(s) becomes. In order to guarantee the existence of robust

signature vectors, we typically set the number of signature vectors in a signature, m, to be fairly

large, but use only the most robust, or highest-ranked, m′ vectors when comparing two signatures.

Specifically, two signature XS and YS are compared using the following Signature Distance:

dsig(XS , YS)
∆
= median{d(gX(sj[i]), gY (sj[i])) : i = 1, 2, . . . , m′}, (3)

where j[i] is the particular permutation of i = 1, 2, . . . , m such that Q(gX(sj[1]) ≥ Q(gX(sj[2])) ≥ . . . ≥
Q(gX(sj[m])). In this paper, we declare two signatures to be similar if their signature distance is less

than or equal to ε. Different ε values are used for precision-recall trade-off in retrieval performance.

In Equation (3), we only use the ranking of XS and ignore that of YS . This is different from

the definition found in [1], where the rankings of both signatures are used. Theoretically, such an

asymmetry may lead to bias in the measurements. For example, if one video is a sub-sequence of the

other, using the ranking of the shorter video may result in a smaller signature distance than using that

of the longer one. Nonetheless, we have found little difference in the experimental results between the

two definitions. We opt for this asymmetric definition because it reduces the signature similarity search
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problem into a metric-space similarity search problem, which is fundamental to many fast algorithms

studied in the literature.

In the signature similarity search problem, we want to identify all the signatures YS in the database

with dsig(XS , YS) ≤ ε, where XS is the input query. However, dsig(·), as defined in Equation (3), is

not a metric because dsig(XS , YS) can be zero even if XS is not identical to YS . Nevertheless, the

signature similarity search problem can be reduced to metric-space similarity search problems using

the following procedure:

Procedure 2.1 Signature Similarity Search

1. Let XS = (gX(s1), . . . , gX(sm)) be the query signature, and j[1], . . . , j[m] be the corresponding
ranking.

2. For each of the top m′ ranked signature vectors gX(sj[i]), identify those signature vectors gY (sj[i])
in the database with d(gX(sj[i]), gY (sj[i])) ≤ ε. This is a similarity search problem in the metric
space (F, d(·)). Let E be the collection of all the signatures with at least one of their signature
vectors returned in these metric-space similarity searches, i.e.

E
∆
= {YS : d(gX(sj[i]), gY (sj[i])) ≤ ε for some i = 1, 2, . . . , m′} (4)

3. Return all the signatures YS in E which have more than half of their signature vectors within
ε of the signature vectors in XS. This is equivalent to finding all the YS in the database with
dsig(XS , YS) ≤ ε.

In step two, by using only the ranking of XS , rather than that of the YS ’s in the database, we turn the

signature similarity search problem into m′ similarity search problems in the metric space (F, d(·)).
The output set E is the set of signatures in the database that share at least one similar signature

vector with the query. The size of E is typically small for a highly heterogeneous database such as the

web. Thus, the last step of Procedure 2.1 is a simple search on a small set of signatures. As a result,

in the remainder of this section, we shall focus on step two, i.e. the metric-space similarity search.

2.2 Fast similarity search on Signatures

Our similarity search algorithm is based on a general framework called the GEMINI [12], reviewed in

Section 2.2.1. We also describe how we measure the performance of specific fast search algorithms in

the same section. The key step in GEMINI, called the feature extraction step, is to design a mapping

from the metric space of feature vectors to a very low-dimensional space where similarity search can

be carried out efficiently. We propose a novel feature extraction mapping to be used in GEMINI for

signature data in Section 2.2.2.
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2.2.1 The GEMINI approach for similarity search

GEneric Multimedia INdexIng, or GEMINI, is an approach for fast similarity search on data endowed

with a metric function. Our description of GEMINI here is based on [12, ch.7]. Given a query vector

x and a database D of feature vectors, we define the resulting set A(x; ε) of the similarity search on x

as follows:

A(x; ε)
∆
= {y ∈ D : d(x, y) ≤ ε}. (5)

Obviously, we can compute A(x; ε) by a sequential search on the database to identify those which

are within ε of x. The GEMINI approach, as outlined below, attempts to avoid the complexity of a

sequential search by projecting the vectors into a low-dimensional metric space where similarity search

can be efficiently performed:

Procedure 2.2 GEMINI

1. Design a feature extraction mapping T which maps feature vectors from the metric space (F, d(·))
to a very low dimensional metric space (F ′, d′(·)). We call the vectors in F ′ the Range Vectors
and d′(·) the Range Metric.

2. For every feature vector y in a database D, compute the corresponding range vector T (y) and
store it in a SAM structure.

3. Given an input query feature vector x, first compute T (x), and then utilize the SAM structure
computed in step 2 to perform a similarity search on T (x). The distance threshold used in this
similarity search, which we refer to as Pruning Threshold and denote by ε′, depends on both ε
and T . We will show how ε′ is determined experimentally in Section 3.2. The set of feature
vectors that correspond to the result of this similarity search is called the Candidate Set:

C(x; ε′)
∆
= {y ∈ D : d′(T (x), T (y)) ≤ ε′} (6)

4. It is possible that some feature vectors in C(x; ε′) are far away from x. To complete the search,
we sequentially compute the full metric function d(·) between x and each of the vectors in C(x; ε′),
and identify those that are truly within ε of x. We denote this resulting set as A′(x; ε, ε′):

A′(x; ε, ε′)
∆
= {y ∈ C(x; ε′) : d(x, y) ≤ ε}. (7)

We can easily extend the GEMINI approach to handle similarity search on signatures by using Pro-

cedure 2.1 discussed in Section 2.1. In the signature case, we denote the candidate set, the resulting

set from sequential search, and the GEMINI resulting set as CS(XS ; ε′), AS(XS ; ε), and A′
S(XS ; ε, ε′)

respectively.

GEMINI solves the signature similarity search problem exactly if A′
S(XS ; ε, ε′) is identical to AS(XS ; ε).

GEMINI is more efficient than sequential search if the following two conditions hold:
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1. The dimension of the range space is small. The dimension directly affects the speed of similarity
search on range vectors in the following two aspects: first, a low-dimensional metric is typically
faster to compute than the high-dimensional one; second, as shown in [14], we can expect a
typical SAM structure to deliver faster-than-sequential search time if the dimension is below
ten.

2. A typical candidate set is small enough so that few full metric computations are required in the
last step of GEMINI.

In this paper, we assume the first condition holds, and do not delve into details of the design and

implementation of any particular SAM structure, as it has been extensively studied elsewhere [11–13].

Instead, we focus on the design of a feature extraction mapping T to achieve the second condition:

making the candidate set as small as possible. Based on the definition in Equation (6), a candidate

set can be made arbitrarily small by decreasing the pruning threshold ε′. Nonetheless, ε′ cannot be

too small, or else most or all of the correct retrievals in AS(XS ; ε) may be excluded. As a result, there

is a trade-off between the complexity, as measured by the size of the candidate set, and the accuracy,

as measured by the fraction of the correct retrievals retained. Specifically, we define two quantities,

Accuracy and Pruning, to quantify this trade-off, and use them to evaluate the performances of

different feature extraction mappings.

Let R be a typical set of query signatures. Accuracy is defined as the ratio between the sizes of the

resulting sets obtained by GEMINI and by sequential search:

Accuracy(ε, ε′)
∆
=

∑
XS∈R |A′

S(XS ; ε, ε′)|
∑

XS∈R |AS(XS ; ε)| , (8)

where |A| denotes the cardinality of set A. Since A′
S(XS ; ε, ε′) contains only those signatures in

CS(XS ; ε′) that are similar to XS , its size is always smaller than or equal to that of AS(XS ; ε) which

contains all the signatures in the database similar to XS . As a result, the dynamic range of Accuracy

is from zero to one, with one corresponding to the perfect retrieval. The complexity is measured by

Pruning, which is defined as the relative difference in the numbers of full signature distance operations

between GEMINI and sequential search:

Pruning(ε′)
∆
=

|R| · |D| −∑XS∈R |CS(XS ; ε′)|
|R| · |D| (9)

The dynamic range of pruning is also between zero and one, with one corresponding to the maximum

reduction in complexity. We can explain the numerator and denominator in Equation (9) as follows:

the number of signature distance operations required by the sequential search is the product of the

number of queries and the size of the database, i.e. |R| · |D|. For GEMINI, full signature distance

operations are only required in step 4 of Procedure 2.2, and their total number amounts to the
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combined size of all candidate sets, i.e.
∑

XS∈R |CS(XS ; ε′)|. As we assumed earlier that similarity

search on range vectors can be efficiently handled by the SAM structure, we ignore the contribution

from step 3 of Procedure 2.2 in the definition of Pruning.

2.2.2 Feature Extraction for Signature

The following procedure describes our proposed feature extraction mapping T (xs):

Procedure 2.3 Feature Extraction Mapping

1. Let xs be any vector from a database of signature vectors with respect to the seed vector s.
Compute the Projection Vector P(xs) as follows:

P(xs)
∆
= (d(xs, s1)

2, d(xs, s2)
2, . . . , d(xs, sm)2) (10)

Note that the distance between xs and each of the seed vectors si used in Equation (10) has been
computed earlier during the signature generation process as described in Equation (1).

2. Reduce the dimension of P(xs) to any desirable value by applying PCA onto D. The resulting
low-dimensional vector is the target feature extraction mapping T (xs).

Procedure 2.3 consists of two steps. The first step forms a projection vector based on distance mea-

surement between a signature vector and all seed vectors, followed by a second step of PCA which

maps the projection vector into any target dimension. The reason for using a two-step approach is to

make our algorithm general enough for arbitrary metric space data. By arbitrary we mean those that

are not necessarily finite dimensional, or use Euclidean distance. Many real-life data such as protein

sequences or text documents cannot be adequately represented in a finite dimensional vector space,

even though their similarity can often be measured via a properly defined metric function. PCA by

itself can only be applied to a finite-dimensional vector space, and is optimal for Euclidean distance.

The first step of our approach defines the projection-vector mapping based only on metric distance.

This is in contrast with PCA which requires a coordinate system and a definition of inner product.

As a result, our approach can be applied to arbitrary metric spaces, making it more general than

PCA. The main innovation of Procedure 2.3 is the use of the projection vector mapping described in

Equation (10). In the remainder of this section, we discuss the motivation behind the use of projection

vectors.

Let S be the set of seed vectors given by {s1, s2, . . . , sm}. Let xs and ys be the signature vectors

in signatures XS and YS that correspond to the same seed vector s ∈ S. Consider the following

m-dimensional vector,

T ∗(xs)
∆
= (d(xs, s1), d(xs, s2), . . . , d(xs, sm)), (11)
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as a feature extraction mapping of xs. We are interested in this particular formulation because of

the following two reasons: first, this mapping does not require complex metric computation as it is

based on d(xs, si) for i = 1, . . . , m, quantities that are readily available from signature generation as

described in Equation (10). Second, the distance d(xs, ys) between any two signature vectors xs and

ys can be related to the coordinates of the corresponding range vectors T ∗(xs) and T ∗(ys) by the

triangle inequality:

|d(xs, si) − d(ys, si)| ≤ d(xs, ys) ≤ d(xs, si) + d(ys, si), i = 1, 2, . . . , m (12)

The above inequalities are instrumental in designing the feature extraction mapping. Our goal is to

make use of these inequalities to design a range metric function d′(·) such that small d(xs, ys) values

correspond to “small” d′(T ∗(xs), T ∗(ys)) values and vice versa.

The mapping T ∗(·) and its variations have been previously proposed in the literature for feature

extraction [19–22]. These techniques typically use a lp-metric [25, p. 361] as the range metric between

T ∗(xs) and T ∗(ys). lp-metric for p = 1, 2, . . . is given by

lp(T ∗(xs), T ∗(ys))
∆
=

(
1

m
·

m∑

i=1

|d(xs, si) − d(ys, si)|p
)1/p

(13)

The special case of l∞(·) is defined as follows:

l∞(T ∗(xs), T ∗(ys))
∆
= max

i=1,2,...,m
|d(xs, si) − d(ys, si)| (14)

We use a normalization factor of 1/m in the definition of lp in Equation (13) so that it is of the same

order of magnitude as the l∞-metric. All the different variations of lp metric functions are composed

of different powers of the absolute differences between the coordinates of T ∗(xs) and T ∗(ys), i.e.

|d(xs, si)−d(ys, si)|, for i = 1, 2, . . . , m. These absolute differences, however, appear only in the lower-

bound half of the triangle inequality in (12). The consequence is that both metric functions defined

in Equations (13) and (14) are upper-bounded by d(xs, ys):

lp(T ∗(xs), T ∗(ys)) ≤ l∞(T ∗(xs), T ∗(ys)) ≤ d(xs, ys) (15)

For any xs and ys with d(xs, ys) ≤ ε, Equation (15) implies that l∞(T ∗(xs), T ∗(ys)) ≤ ε and

lp(T ∗(xs), T ∗(ys)) ≤ ε. This is an important property called the contractive property of the lower

bound [12]. Consider the situation when T ∗(·) is used as the feature extraction mapping and l∞

or lp as the range metric in Procedure 2.2. By setting ε′ = ε, the contractive property guarantees

that the candidate set C(xs; ε
′) contains the entire result set A(xs; ε), thus achieving perfect accuracy.

We call the approach of using T ∗(·) with l∞ as the feature extraction mapping in Procedure 2.2 the

“lower-bound” method. l∞ is preferred over other lp metrics as it is a closer estimate to d(xs, ys) as

indicated in Equation (15).
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Nevertheless, for similarity search on the web, fast search time is typically more desirable than

perfect accuracy. Using a simple experiment, we now demonstrate that better pruning-accuracy trade-

off can be achieved by combining both the upper and lower bounds of the triangle inequality. Our

experiment is based on a random set of 10,000 signature vectors selected from a large web video

dataset, and their distances with respect to a set of m = 100 seed vectors. The feature vectors are

color histograms of selected frames from the video sequences and the distance function is l1. More

details about the use of color histogram and the dataset will be provided in Section 3.1. For each

pair of signature vectors xs and ys, we compute d(xs, ys), and illustrate its distribution in Figure 1

as a function of a single lower and upper bound, defined as follows: for the lower bound, we take the

maximum over all the individual lower bounds in (12), which is identical to l∞(T ∗(xs), T ∗(ys)). For

the upper bound, we use a similar approach and take the minimum of the individual upper bounds in

(12) to form an α(·) function:

α(T ∗(xs), T ∗(ys))
∆
= min

i=1,2,...,m
[d(xs, si) + d(ys, si)] (16)

Different colored points in Figure 1 correspond to different ranges of values for d(xs, ys).

If we set ε to be 3.0, which we experimentally find to be a reasonable value to identify the majority

of visually similar web video in the dataset, then metric values found in a typical resulting set A(xs; ε)

will include those black and magenta data points in Figure 1. Our goal then is to separate these

“small-metric” points, from the rest of the “large-metric” points. If we use l∞(·) as the range metric,

a typical candidate set based on the inequality l∞(T ∗(xs), T ∗(ys)) ≤ ε′ will include all the points below

a horizontal line at level ε′. An example of such a set with ε′ = 3 is shown in Figure 1. Even though

all the small-metric points are within the candidate set, many of the large-metric points are also

erroneously included as they have small l∞(·) values. It is clear, based on the shape of the distribution

of the small-metric points, that a better separating function should combine both l∞(·) and α(·). One

possible choice is based on their product, β(·), defined as:

β(T ∗(xs), T ∗(ys))
∆
= α(T ∗(xs), T ∗(ys)) · l∞(T ∗(xs), T ∗(ys)) (17)

As shown in the figure, even though the candidate set defined by β(T ∗(xs), T ∗(ys)) ≤ 9 misses a few

small-metric points, it excludes a much larger set of large-metric points than l∞(·). The problem with

β(·) is that it is not a metric2. As a result, we cannot directly employ β(·) as our range metric.

The β(·) function in (17) is defined as the product of α(·) and l∞(·), which represent the aggregate

bounds of all the inequalities in (12). Rather than using the two aggregate bounds, it is much easier

2 β(·) is not a metric because, for an arbitrary pair of m-dimensional vectors u and v, β(u, v) becomes zero when u

and v share a zero in any one of the coordinates, rather than u = v as required by a true metric.
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to form a metric by using the product of the bounds from the individual inequalities as follows:

[d(xs, si) + d(ys, si)] · |d(xs, si) − d(ys, si)| = |d(xs, si)
2 − d(ys, si)

2|, i = 1, 2, . . . , m (18)

Note that Equation (18) is in the form of an absolute difference. While absolute differences also appear

in the definitions of lp metrics in Equation (13), the one in Equation (18) is the absolute difference

of squares of T ∗(·)’s coordinates, rather than absolute difference of coordinates of T ∗(·) themselves.

Thus, it is conceivable to propose a new metric ζ(·) that combines l2 with this absolute difference of

squares of coordinates as follows3:

ζ(T ∗(xs), T ∗(ys))
∆
=

(
1

m
·

m∑

i=1

[d(xs, si)
2 − d(ys, si)

2]2

)1/2

(19)

Note that this metric applied to T ∗(·) can also be interpreted as the l2(P(xs),P(ys)), where P(xs)

is the projection vector defined in Equation (10). Therefore, l2 metric with the projection vector

mapping is equivalent to applying the ζ(·) metric onto T ∗(·) mapping.

In Section 3.2, we will experimentally demonstrate that the projection vector mapping with l2-metric

outperforms both the “lower-bound” scheme using l∞(T ∗(xs), T ∗(ys)) and the “product” scheme using

β(T ∗(xs), T ∗(ys)). In practice, the m-dimensional projection vector may still be too large for most

SAM structures. In step 2 of our proposed Procedure 2.3, we apply PCA to projection vectors in order

to produce the best approximation of l2(P(xs),P(ys)) for any given target dimension. Experimental

results in Section 3.2 show the superior performance of Procedure 2.3 over other dimension reduction

schemes.

2.3 Similarity clustering on Signatures

By applying the fast similarity search techniques described in Section 2.2, it is possible to rapidly

identify video sequences similar to a given query in a large database. In this section, we introduce a

clustering algorithm that utilizes such information to identify all clusters of similar video sequences in

the database.

In order to describe our clustering algorithm in a general framework, we will treat the set of sig-

natures and the distance relationship as a graph. A graph G has a set of vertices V (G) and a set

of edges E(G) ⊂ V (G) × V (G). All edges we consider are undirected. In many occasions, we only

consider a portion of a graph. Thus, we need the notion of a subgraph – G ′ is a subgraph of G if

V (G′) ⊂ V (G) and E(G ′) ⊂ E(G). If the subgraph G ′ inherits all the edges between its vertices from

3 Technically, ζ(·) forms a metric only for real vectors with non-negative (or non-positive) coordinates, which is
the case for our T ∗(·) vectors. If both positive and negative coordinates are allowed, ζ(·) fails to become a metric as
ζ(u, v) = 0 when the coordinates u and v have the same magnitudes but different signs.
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the original graph, G ′ is called an induced subgraph. In our application, each signature in the database

is represented as a vertex in a graph. Ideally, two signatures should be linked with an edge if the two

corresponding video clips are truly similar. Typically, a small signature distance is a good indicator

of an edge. Nevertheless, even if the signature distance between two vertices is large, there might still

be a need for an edge if, for example, there has been an error in the distance measurement. Such

an error may be revealed if there are many other signatures that are simultaneously close to both of

them. The primary goal of a clustering algorithm is to make use of all measured distance relationship

to infer the most reasonable placement of edges. Since it is computationally infeasible to search all

possible graphs, we only consider a special subset of them called the threshold graphs. A threshold

graph P (V, ρ) has a vertex set V, and has an edge between every two of its vertices if the distance

between them is less than ρ > 0. The length of an edge is defined to be the signature distance in

Equation (3). We ignore the asymmetry in Equation (3) and treat every edge as undirected.

In the absence of any error in distance measurement and similarity search, we assume that the

largest possible signature distance between two truly similar video clips is µ. The choice of µ depends

on the feature vector as well as the data. For the feature vector to be useful in similarity detection, µ

is typically much smaller than the maximum distance value, and the threshold graph P (V, µ) is very

sparse. Our algorithm considers all the threshold graphs P (V, ρ) with ρ ≤ µ. Since each of these

P (V, ρ) is very sparse, they are likely to contain many isolated Connected Components. A connected

component, or CC, of a graph is an induced subgraph in which all vertices are reachable from each

other, but completely disconnected from the rest of the graph. CC’s in the threshold graph P (V, ρ)

are prime candidates for similar clusters: all signatures in a CC C are at least ρ away from the rest of

the database. If C is also a complete graph, which means that there is an edge between every pair of

signatures, intuitively it corresponds to what a similar cluster should be : all video sequences in it are

similar to each other but far away from the rest of the database. In practice, full completeness is too

stringent of a requirement to impose because the randomness in signatures may erroneously amplify

the distance between some similar video sequences. Thus, as long as C is close to a complete subgraph,

it is reasonable to assume that it represents a similar cluster. To this end, we need a measurement of

the density of edges inside a CC. Note that for any CC C, there are at least |V (C)| − 1 edges as C is

connected, and at most |V (C)| · (|V (C)|−1)/2 edges if there is one edge between every pair of vertices.

We can thus define an edge density function Γ(C) between these two extremes as:

Γ(C)
∆
=





|E(C)|−(|V (C)|−1)

|V (C)|·
(|V (C)|−1)

2
−(|V (C)|−1)

if |V (C)| > 2

1 otherwise,
(20)

Γ(C) evaluates to 0 when C is barely connected, and to 1 when C is complete. We define a similar
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cluster to be a CC whose edge density exceeds a fixed threshold γ ∈ (0, 1].

We are now ready to describe our clustering algorithm: given a database of signatures V, we compute

P (V, µ) by performing a fast similarity search on each signature to identify all those that are within

distance µ away. The resulting P (V, µ) is composed of CC’s with varying edge densities. Those CC’s

with edge densities larger than γ are identified as similar clusters and removed from the graph. For

the remaining CC’s, we start removing edges in decreasing order of length until some similar clusters

emerge. To avoid bias, edges of the same length are removed simultaneously. This process of edge

removal is equivalent to lowering the distance threshold ρ until the graph is partitioned into multiple

CC’s. CC’s with high enough edge densities are identified as similar clusters. This process of lowering

distance threshold and checking edge density is repeated until we exhaust all the CC’s.

The key step of the above algorithm is to find the appropriate distance threshold to partition a CC

C once it is found not be a similar cluster. A naive approach is to check whether C remains connected

after recursively removing the longest edge, or edges if there are multiple of them with the same

length, from C. This approach is computationally expensive as we need to check connectedness after

each edge removal. Let E be the set of equally-long edges last removed from C before it is separated

into a number of new CC’s. It can be shown that the longest branch in any Minimum Spanning Tree

(MST) of C must belong to E [29, Appx. 5B]. A MST T of a connected graph C is a subgraph that

connects all vertices with the least sum of edge length. Thus, the length of the longest branch in T
represents the appropriate distance threshold to partition C into CC’s. Furthermore, after partitioning

C into a new set of CC’s, the subtree of T in each newly-formed CC is also a MST. As a result, we

can repeat the same process for each CC without ever recomputing a new MST. In a nutshell, we only

need to compute the MST once for the original threshold graph P (V, µ), and the distance threshold

required for partitioning any CC in the graph is the length of one of the branches in the MST. We

now summarize the procedure of our clustering algorithm as follows4:

Procedure 2.4 Signature Similarity Clustering

1. Compute P (V, µ) by applying fast similarity search on each node in V.

2. MST Construction

(a) Sort all edges in P (V, µ) in increasing order of length.

(b) For each edge e in the sorted list, determine if e is a MST branch.

(c) If e is not a MST branch, it must belong to one of the CC’s. Increment the edge and node
counts of the CC that contains e.

4The procedure described here assumes all the edges in P (V, µ) are of different length. A slightly more complicated

version that handles equal-length edges can be found in Appendix 5A of [29].
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(d) If e is a MST branch, compute the edge densities of the two CC’s joined by e based on their
respective edge and node counts.

3. Cluster Formation

(a) Examine each branch t of the MST in decreasing order of length. No sorting is required
because edges are already sorted in step 2(a).

(b) If the CC attached to t has an edge density larger than or equal to γ, declare it as a similar
cluster and remove it from the graph.

The second step of Procedure 2.4, i.e. MST Construction, basically follows the Kruskal algorithm

described in [30, ch. 23]. The only difference is that whenever a new branch is added to the MST, we

compute the edge density of the CC on either side of this branch. As explained before, the length of

each MST branch is the right distance threshold to partition a graph into CC’s, and the edge density

of each CC is computed based on all their edges shorter than the threshold. Recall that the Kruskal

algorithm builds the MST by sequentially examining all edges in the increasing order of length. When

a new MST branch is identified, all the edges that contribute to the edge densities of the CC’s on

either side of this new branch must have already been examined by the algorithm. Thus, we can

compute the edge density by simply keeping track of the number of edges and nodes in each CC thus

far examined by the Kruskal algorithm, before it is linked by a new MST branch. The time complexity

of the second step of Procedure 2.4 is the same as the Kruskal algorithm, which is O(e log e) where e

is the number of edges in P (V, µ). The last step of Procedure 2.4, i.e. Cluster Formation, uses the

pre-computed edge densities to determine if a CC is a similar cluster. Since there are at most |V| − 1

branches in the MST, the time complexity for this step is O(|V|).

3 Experimental results

In section 3.1, we describe the color histogram feature used to represent each video frame and the

web video dataset for experiments. Experimental results for the proposed fast similarity search and

clustering are presented in Sections 3.2 and 3.3 respectively.

3.1 Color histogram feature and video dataset

We represent each frame in a video using a feature vector that consists of four 178-bin HSV color

histograms, each representing a quadrant of a frame [1]. Two slightly different distance measurements

are used on the feature vectors. The dc metric, as defined below, is used for signature generation:

dc(x, y)
∆
=

4∑

i=1

dq
c(xi, yi) where dq

c(xi, yi)
∆
=

178∑

j=1

|xi[j] − yi[j]| (21)
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where xi and yi for i ∈ {1, 2, 3, 4} represent the quadrant feature vectors. As we normalize each

histogram bin value to be within 0 and 1, the range of dc(x, y) is from 0 to 8. A slightly modified

distance, denoted by d̂c, is used for computing the signature distance:

d̂c(x, y)
∆
=

4∑

i=1

d̂q
c(xi, yi)

where d̂q
c(xi, yi)

∆
=





2
2−xi[c]−yi[c]

178∑

j=1,j 6=c

|xi[j] − yi[j]| if xi[c] > 0.5 and yi[c] > 0.5

178∑

j=1

|xi[j] − yi[j]| otherwise.

(22)

When d̂c is used, if there exists a color c that occupies more than 50% of both histograms, its bin

value will be removed, and the dc metric will be computed over the rest of the histograms after re-

normalization. The range of d̂c is also between 0 and 8. We have found such a distance measurement

to be effective in differentiating image contents with identical background color, such as mathematical

plots. Even though d̂c and dc are closely related to each other, unlike dc, d̂c is not a metric in the

mathematical sense. The use of a metric space is one of the key assumptions behind the ViSig method

and the fast similarity search schemes described in Section 2.2. As such, we design d̂c in such a way

that its use can be treated as a post-processing step in the similarity search. It can be shown that

d̂c(x, y) is always larger than or equal to dc(x, y):

d̂c(x, y) ≥ dc(x, y) (23)

for any color histogram feature vectors x and y [29, Appx. 3A]. In a similarity search, we are interested

in finding the set of “similar” feature vectors whose distances with the query are within some ε > 0.

Equation (23) implies that the set of similar feature vectors identified by d̂c must be a proper subset

of the set identified by dc. Thus, we can treat the use of d̂c as a post-processing step to refine the

results of the similarity search obtained via dc. For the rest of the paper, we adopt this model, and

develop the theory of similarity search by assuming the use of a true metric.

All the experiments reported in this paper are based on the dataset of signatures generated from

the 46,331 web video clips crawled from the web, with total duration of about 1,800 hours. We refer

to this test dataset of signatures as SIGDB. Based on our prior experimental results in [1], we use

m = 100 seed vectors for each signature, and the top m′ = 6 ranked signature vectors for computing

the signature distance as described in Equation (3). The seed vectors are based on keyframes sampled

from the video sequences in the database. εC used in computing the ranked function (2) is set to be

2.0.
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3.2 Experiments on fast search

Three sets of experiments are performed to characterize the performance of the fast similarity search

system described in Section 2.2. The first two experiments focus on the pruning-accuracy perfor-

mance of different components of the feature extraction mapping described in Section 2.2.2. The final

experiment measures the computation speed for different similarity search schemes.

In the first experiment, we compare the projection vector mapping described in Equation (10)

using l2-metric with (a) the “lower-bound” scheme based on the mapping T ∗(·) in Equation (11) and

the l∞-metric, and (b) the “product” scheme based on T ∗(·) and the β(·) function defined in (17).

It should be noted that the “lower-bound” scheme is the same as the Triangle-Inequality Pruning

(TIP) proposed in [22]. We extend all these schemes from handling a single signature vector to the

full signature by applying Procedure 2.1. A random query set of 1000 signatures are drawn from

the SIGDB and the goal is to identify all signatures in the SIGDB whose signature distances are

within ε = 3.0 of the queries. Pruning and accuracy values for each scheme, as defined in (9) and (8)

respectively, are measured for different ε′. The resulting plots of pruning versus accuracy are shown

in Figure 2. A good feature extraction mapping should achieve pruning and accuracy that are as

close to one as possible. As shown in the figure, our proposed scheme clearly out-performs both the

“lower-bound” and “product” schemes by achieving much higher pruning at the same accuracy level.

Also, as expected, the “product” scheme out-performs the “lower-bound” scheme as the “product”

scheme exploits both the upper and lower bounds of the triangle inequality.

In the second set of experiments, we combine projection vector mapping and PCA as described in

Procedure 2.3, and compare its pruning-accuracy performance at different target dimensions with the

following schemes:

PCA While in our proposed scheme, PCA is applied on the projection vectors, it can also be directly
applied onto the 712-dimensional color histogram feature vectors. In this scheme, we apply PCA
to reduce the dimension of the color histograms, and use l2-metric on the resulting range vectors.
The use of PCA on the color histogram can be justified as follows: even though PCA is only
optimal for l2 metric, the dc metric used between the color-histogram feature vectors can be
bounded above and below by l2 as follows5:

1√
712

· l2(xs, ys) ≤ dc(xs, ys) ≤ l2(xs, ys) (24)

It is thus conceivable to use the l2 metric to approximate the dc metric.

Fastmap In [18], Faloutsos and Lin have proposed a feature extraction mapping called the Fastmap
to approximate a general metric space with a low-dimensional l2 space. Fastmap is a randomized

5 The proof of the inequality can be found in [16]. Following the same convention as in Equation (13), the l2 metric
is normalized by the dimension of the vector.
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algorithm which iteratively computes each dimension of a range vector by projecting the data
onto the “axis” spanned by the two points with maximal separation. l2 distance is used to
compare range vectors.

Haar Another method for feature extraction in color histograms is to apply a Haar wavelet transform
on the histogram bin values according to the adjacency of colors in the color space. The index
vector consists of the few low-pass coefficients from the transform. The Haar wavelet approach
used in this paper is based on the scheme described in the MPEG-7 standard [23]. l1 metric is
used to compare range vectors.

To compute an appropriate feature extraction mapping for a database, our proposed method and PCA

need to scan the entire database once. Fastmap requires multiple scans to find maximally separated

data points in the database. The simplest technique is Haar as it is a fixed transform and does not

depend on the data at all.

We follow the same procedure as the first experiment to measure accuracy and pruning for all the

schemes being tested. Since most of the schemes require training data to generate the mappings, we

arbitrary split SIGDB into two halves – we call one half the “training” SIGDB, which is used for

building the mapping, and the other half the “testing” SIGDB, which is used for the actual testing.

In order to ensure the suitability of incorporating these schemes into GEMINI, we focus on using very

low dimensions for range vectors. We test all the schemes for dimensions two, four and eight. The

corresponding pruning-accuracy plots are shown in Figures 3(a) through (c). Our proposed scheme

results in the best performance in all the dimensions tested, followed by Haar, Fastmap and PCA.

The gain of the proposed scheme over the second best scheme, however, diminishes as the dimension

increases.

In applying the feature extraction scheme in a fast similarity search, we need to choose a particular

value of pruning threshold ε′ in order to compute the candidate set. Given the target dimension,

accuracy, and pruning, one possible approach is to set ε′ to a value that attains the particular level of

performance in a previously completed experiment. Thus, an important question to answer is whether

the relationship between ε′ and the corresponding pruning and accuracy holds for queries other than

the ones being tested. To answer this question, we repeat the experiments on our proposed scheme at

dimension eight for three independent sets of random queries. Each set has 1000 signatures randomly

drawn from the testing SIGDB. For each set of queries, different values of pruning and accuracy are

measured by varying ε′. The experiment is also repeated for three different values of ε, namely 2, 3,

and 4. The resulting plots of pruning and accuracy versus ε′ for the three query sets and different

values of ε are shown in Figure 3(d). As shown in the figure, there is little variation in the amount of

pruning among the three sets. There is some variation in the accuracy for small ε, but the variation

diminishes as ε becomes larger. The maximum differences in accuracy among the three sets over all
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possible values of ε′ are 0.12, 0.06, and 0.04 for ε = 2, 3, and 4 respectively. These fluctuations are

small compared to the high accuracy required by typical applications.

In the final experiment, we perform a number of speed measurements on a particular platform.

Rather than measuring the performance of the entire GEMINI system, we make some simplifications

so as to focus on measuring the performance of various feature extraction techniques. The most noted

simplification is the absence of a SAM structure in our implementation. The primary function of

a SAM structure is to provide fast similarity search on the low-dimensional range vectors. In our

implementation, we have chosen to replace it with a simple sequential search. However, we measure

time for sequential search separately so that we can compare different schemes fairly. Another function

provided by a SAM structure is the memory management for large databases. When a database is

too large to fit within the main memory, and hence must be stored in a disk system, a SAM structure

typically stores similar data items in contiguous regions within the disk. This can minimize the number

of slow random disk access during a similarity search. As the size of our test dataset is moderate, we

fit the entire database of signatures and indices within the main memory so as to eliminate the need

for memory management.

We perform our experiments on a Dell PowerEdge 6300 Server with four 550MHz Intel Xeon pro-

cessors and 1 Giga-bytes of memory. As all the tests are run under a single thread, only a single

processor is used. The testing SIGDB, which contains 23,206 video signatures, each consisting of 100

signature vectors, and their corresponding 8-dimensional indices are first loaded inside the memory.

100 queries are randomly sampled from the testing SIGDB, and the time to perform the similarity

search for each query is measured. Pruning thresholds are chosen, based on the previous experiments,

to hit the 90% accuracy level for similarity searches at ε = 3.0. As a reference, we also measure the

performance of sequential search on signatures with no feature extraction. The results are tabulated

below:

Feature Extraction Sequential Proposed Fastmap Haar PCA

Accuracy 1.00 0.89 0.91 0.92 0.89

Index time (ms) - 131 ± 0.8 131 ± 1.5 152 ± 1.3 130 ± 1.4

Refinement time (ms) 6730 ± 35 33 ± 8 75 ± 11 123 ± 28 401 ± 75

Candidate Size/query - 109 ± 27 262 ± 39 428 ± 97 1386 ± 257

The Index time is the time required for the sequential search on range vectors to identify the candidate

sets. The averages and their standard error at 95% confidence interval are shown. As the Sequential

scheme does not use any range vectors, no number is reported. The proposed scheme, Fastmap, and

PCA all use the l2 distance on range vectors and thus, result in roughly the same index time. Haar

requires slightly larger index time for its l1 distance computation. The refinement time is the time
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required to perform the full signature distance computations on the candidate sets. Our proposed

scheme outperforms all other feature extraction schemes in refinement time. The large standard error

in the refinement time is due to the variation in the size of candidate sets, as depicted in the last row

of the table. Combining the index time and refinement time, the proposed scheme is roughly 41 times

faster than the sequential search on signatures.

3.3 Experiments on clustering

In this section, we present experimental results on the performance of various clustering algorithms and

the statistical analysis of similar clusters found in the web video dataset described in Section 3.1. First,

we compare the retrieval performance of the proposed algorithm with those of simple-thresholding,

single-link, and complete-link techniques. The retrieval performance is measured based on how well an

algorithm can identify a set of manually-selected similar video clusters, or the ground-truth set from

the dataset. The ground-truth set consists of 443 video sequences in 107 non-overlapping clusters.

The size of the clusters ranges from 2 to 20, with average at 4.1. Details of this ground-truth set can

be found in [29, ch. 2]. Distances between signatures in all the tested algorithms are computed by

the fast similarity search scheme described in Section 2.2, with pruning threshold ε′ set at 3.0. Since

signature distances are stored as graph edges in an edge database, we limit the maximum signature

distance stored to 4.0 in order to keep the edge database to a reasonable size. Based on our experience

with the ground-truth set construction, this is a reasonable distance threshold as histograms of images

that are similar in color are rarely more than 4.0 apart.

The performance metrics used in our experiments are average recall and average precision, which

are defined using the concepts of relevant and return sets. Let Υ be the set of all the video sequences

in the ground-truth set, and Ci, i = 1, . . . , N be the N similar clusters inside. For any query video clip

q ∈ Υ, we define the relevant set to q as rel(q) = Ci \{q} where q ∈ Ci and \ denotes set exclusion. For

any retrieval algorithm, we define the return set of q, ret(q, λ), to be the set of video clips returned by

an algorithm, excluding q itself, after presenting q as a query. λ denotes the parameter(s) used by the

algorithm to effect the tradeoff between recall and precision. For simple thresholding, the parameter

is a distance threshold and the return set contains all the signatures that are within that particular

distance threshold of q. The rest of the algorithms are all clustering algorithms and the return set is

the cluster that contains q6. The algorithm parameters are the maximum allowable distance between

clusters for single-link and complete-link, and the edge density threshold γ for our proposed scheme.

6 For the general case when q is not part of the database, we can define an ad-hoc distance between q and each
cluster based on, for example, the minimum of the distances between q and each of the elements in the cluster. The
return set will simply be the cluster closest to q.
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Based on the notions of relevant and return sets, we define average recall and average precision of an

algorithm as follows:

Recall(λ)
∆
=

1

|Υ|
∑

q∈Υ

|rel(q) ∩ ret(q, λ)|
|rel(q)| and Precision(λ)

∆
=

1

|Υ|
∑

q∈Υ

|rel(q) ∩ ret(q, λ)|
|ret(q, λ)| . (25)

By adjusting the parameters for each of the four algorithms, we measure the average precision values

at a pre-defined set of average recall levels. In the case when an algorithm cannot achieve a target

recall level precisely, the average precision value reported corresponds to that of the smallest achievable

recall level larger than the target level [31]. The resulting precision-versus-recall curves are shown in

Figure 4(a). All four algorithms produce similar precision measurements for recall up to 0.7. The

precision values for the proposed scheme are slightly lower than the others. This is due to a number

of misclassification in some of the smaller clusters in the ground-truth set. The misclassification can

be explained as follows: for small CC’s, their edge densities as defined in Equation (20) can be large

even if they are not exactly “densely” connected. For example, the edge density of a merely connected

three-node graph is 0.5. In a much larger CC, an edge density of 0.5 implies that each node is connected

to, on average, half of the other nodes in the same CC. This is typically a very good indicator of a

similar cluster. As the same edge density threshold is applied to all clusters regardless of their size, it

is more likely for the proposed algorithm to misclassify small clusters.

The precision of the proposed algorithm stays roughly the same for recall up to 0.825 while all

the others begin to drop at recall of 0.7. The maximum difference in precision between the proposed

algorithm and the rest of the algorithms is about 0.13 at recall of 0.85. We are unable to obtain preci-

sion values for simple-thresholding and complete-link at recall values beyond 0.9 and 0.85 respectively

because the distance thresholds for both algorithms have reached the maximum distance value stored

in the edge database. For recall values beyond 0.85, the precision of the proposed algorithm drops

rapidly as chain-like clusters begin to form due to the low edge density threshold. At this point, the

proposed algorithm behaves very similar to the single link algorithm. None of the algorithms can

achieve perfect recall as some of the similar video sequences in ground-truth clusters have different

color content and produce very large color histogram distances. Other types of features must be used

in order to identify these similar video sequences.

Figure 4(b) shows the plots of precision and recall versus the edge density threshold γ of our

proposed algorithm. Larger γ values correspond to more strict criterion in forming clusters, leading to

larger precision and smaller recall. The retrieval performance stays relatively constant for a large range

of γ. As a result, the detection of similar clusters in a large web video dataset should be relatively

insensitive to the choice of γ.
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To further study how similar video clips are distributed on the web, we set γ to 0.2, and produce

a clustering structure on our experimental database. The resultant clustering structure has a total of

7,056 clusters, with average cluster size of 2.95. Since there are 46,331 video clips in the database,

7056 · 2.95/46331 ≈ 45% of the video clips in our database have at least one possibly similar version.

Figure 4(c) shows the distribution of cluster sizes. The majority of the clusters are very small – 25%

of the clusters have only two video clips in them. Nonetheless, there are a few clusters that are very

large. The abundance of similar versions in these clusters may indicate that these video clips are very

popular in the web community. The following table lists the top ten clusters identified in the clustering

structure:

Label Size Diversity Misclassified? Descriptions or Explanations

A 263 0.12 Y Share a segment of red letters on black background

B 172 0.70 N Dancing Baby from tv show “Ally McBeal”

C 126 0.43 Y Share a segment of “MTV News” sign

D 95 0.01 Y Share a segment of “chv.net” sign

E 68 0.01 N An error message from chv.net server

F 56 0.98 N Angry man hitting a computer

G 48 0.19 N Mathematical plots of wave equation

H 46 0.09 N Segments of President Clinton taped testimony

I 43 0.42 N SOHO Astronomical Video

J 42 0.08 N Synthetic Aperture Radar Video

We provide each cluster with a label in the first column for ease of reference. The second column

indicates the size of each cluster. In the third column, we consider the diversity of web locations

where similar video clips are found. We notice that it is quite common for a content creator to put

similar video clips such as those compressed in different formats on the same web-page. Diversity

is the ratio between the number of distinct web-pages in each cluster and the cluster size. A large

ratio implies that video clips in that cluster are originated from very diverse locations. The fourth

column indicates the correctness of the cluster – a “N” indicates that more 95% of the video clips

in the cluster are declared to be similar by manual inspection. As shown in the table, clusters A,

C and D are wrongly classified. Upon careful examination, we have found that all the video clips

in each of these clusters share a visually-similar segment, from which multiple signature vectors are

selected. As a result, they are classified to be “similar” even though the remainder of the content

in these clips are very different. A possible remedy to this problem is to raise the required number

of similar signature vectors shared between two signatures before declaring them as similar. Among

those which are correctly classified, clusters E, G, H and J consist of clips that are mostly from the

same web-page. Some of them are identical, such as the error message found in cluster E. Others
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have very similar visual contents such as those in G, H and J. These types of sequences are generated

intentionally by the content creators, and provide little information on how video sequences are copied

and modified by different web users. On the other hand, clusters B, F, and I have relatively high

diversity values. Video sequences in cluster B are from a popular television show, cluster F contains a

humorous sequence of a man’s frustration towards his computer, and cluster I contains astronomical

video clips from a large-scale, multi-nation research project. Large clusters with high diversity values

seem to indicate that the corresponding video content is of interest to a large number of web users.

Such information can be used to provide better ranking for retrieval results – popular content should

be ranked higher as they are more likely to be requested by users.

4 Conclusions and future work

We have described a video search engine that uses video signatures to represent video clips from

a large database such as the web. The two major algorithmic designs in this search engine are a

feature extraction mapping for fast similarity search, and a clustering algorithm for grouping signatures

into similar clusters. In our proposed feature extraction mapping, we have made use of the squared

signature distances between the signature vectors and the seed vectors to form a projection vector. The

dimension of the projection vectors is further reduced by using PCA. We have shown experimentally

that this technique provides better trade-off between accuracy and pruning as compared with PCA,

Fastmap, and Haar Wavelet. Even though the use of projection vectors has been motivated based

on experimental data of color histograms, the concept is based on the triangle inequality which is

a defining property of any metric space. As such, we plan to test this technique on other types

of feature vectors for video similarity detection. Another direction is to study the effect of seed

vectors on the performance of similarity search. The proposed feature extraction mapping is based on

distances between signature vectors and the seed vectors, which are randomly sampled from a training

dataset [1]. It is conceivable that more sophisticated methods can be used to select better seed vectors

so that the resulting mapping produces better trade-off between accuracy and pruning. A study on

the similar approach has shown that the similarity search performance can indeed be improved by

carefully choosing the seed vectors7 to match the data [22].

We have also proposed a graph-theoretical algorithm that identifies highly-connected CC’s formed

at different distance thresholds as clusters. The algorithm is based on the classical Kruskal algorithm

on building minimum spanning tree. The criterion to determine a cluster has been based on an

7 The term “key” was used in the original paper.
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experimentally-determined edge density threshold γ. As the goal of the clustering algorithm is to

combat the uncertainty in distance measurement, a better characterization of the imprecision in ViSig

method and dimension reduction should provide a more direct method for choosing γ. Another issue

that we have not addressed in this paper is how to maintain the clustering structure when video

signatures are inserted or deleted from the database. Based on the current design, we can first update

the sorted edge database, then re-build the minimum spanning tree, and finally re-cluster based on

the new tree. The update of the edge database can be carried out efficiently using the B-tree index in

the Berkeley DB package. On the other hand, re-building the MST runs in linear time with respect

to the number of edges and re-clustering in linear time with respect to the number of nodes. One

possible approach to speed up the last two steps is to perform a local repair on the MST in the case

when the new signatures affect only a small portion of the graph.
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Figure 1: Distribution of the metric d(x, y) for 100,000 random pairs of signature vectors. The y-axis is
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Figure 4: (a) Precision versus recall for different clustering algorithms and simple thresholding. (b) Precision
and Recall versus edge density threshold γ. (c) Distribution of cluster sizes.
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