REAL TIME SOFTWARE IMPLEMENTATION OF SCALABLE VIDEO CODEC

W. Tan, E. Chang, and A. Zakhor

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720 USA
E-mail: {dtan,changed,avz}Qeecs.Berkeley.EDU

ABSTRACT

Scalable video compression is becoming increasingly
more important in diverse, heterogeneous networks of
today. In our previous work [2], we developed a scalable
codec capable of generating bit rates from tens of kilo
bits per second to several mega bits per second with fine
granularity of available bit rates. This codec is based
on 3-D subband coding and multi-rate quantization of
subband coefficients, followed by arithmetic coding. In
this paper, we will replace the arithmetic coding por-
tion of the codec in [2] with block coding, and compare
encode/decode speed of this new coder with MPEG.
Unlike MPEG, this codec requires symmetric compu-
tational power at the decoder and encoder and as such
is useful in software only, real time, interactive video
applications. We have found the encoding speed of the
new encoder to be one order of magnitude faster than
MPEG-1, without significant loss in compression effi-
ciency.

1. INTRODUCTION

With ever more video information stored in digital for-
mat, real-time video encoding and decoding has be-
come an indispensable capability for workstations. The
simplest application would be playing back video archives
from either a CD-ROM or over other storage devices.
Another application would be video conferencing. Cur-
rently, most real-time decoding mechanisms resort. to
expensive special purpose hardwares that become out-
dated quickly. A software implementation is clearly
superior not only in being cheaper, but also in being
easily portable to virtually any machine with perfor-
mance scaling automatically with processing power.
Real-time MPEG decoding is already happening [3].
However, MPEG lacks the multi-rate, multi-resolution
capability as often desired for transmission over het-
erogeneous networks. Recently a scalable video com-
pression algorithm has been proposed [2] that not only

This work was supported by NSF grant MIP-9057466, ONR
grant N00014-92-J-1732, AFOSR contract F49620-93-1-0370,
California State Program MICRO, Philips, SUN Microsystems,
LG electronics and Tektronix.

0-7803-3258-X/96/$5.00 © 1996 IEEE ' 17

operates at a wide range of bit rates, from tens of kilo
bits to several megabits per second, but also provides
a fine granularity of available bit rates. In addition,
these properties are achieved without loss of compres-
sion efficiency as compared to standard algorithms such
as MPEG. However unlike MPEG where the encoding
is considerably more compute intensive as compared to
decoding, the scalable algorithm in [2] requires sym-
metric computation power in encoding and decoding.
This codec is based on 3-D subband coding and multi-
rate quantization of subband coefficients, followed by
arithmetic coding. This symmetric encode/decode ca-
pability is a direct consequence of the fact that unlike
MPEG, there is no motion vector estimation in the 3-D
subband codec.

In profiling the encode/decode times of the codec
in [2], we find arithmetic coding to be a major bottle
neck. For instance decoding one SIF size frame at 500
kilo bits per second using a 170 Mhz Ultra Sparc re-
quires 91 msec, of which 51 mili seconds is devoted to
arithmetic decoding. In this paper, we improve speed
limitations of arithmetic coding portion of the codec in
[2] by replacing it with block decoding. This new codec
still enjoys symmetric encode/decode properties, but
more importantly, can achieve encode speeds of up to
one order of magnitude faster than MPEG-1, without
significant loss in compression efficiency. The outline
of the paper is as follows. Section 2 describes the way
block coding is applied to layered quantization, section
3 describes implementation details, and section 4 de-
scribes speed and efficiency comparisons with MPEG.

2. ZERO CODING BASED ON
HIERARCHICAL BLOCK CODING

One of the most compute intensive parts of the codec
in [2] is arithmetic coding of multi-rate quantized 3-D
subband coefficients. In this section, we will propose
block coding as an alternative to the arithmetic coding
of subband coefficients.

In multi-rate quantizing subband coefficients, we
choose a dead zone quantizer in which the width of
the deadzone is twice as large as the width of each

quantization bin, for all quantization layers. In suc-
cessive quantization of subband coefficients, each non-
deadzone quantization bin is divided into two equal size
bins. Since a large number of coefficients in 3-D sub-
band coding are close to zero, and hence fall into the
dead zone, coding the “significance map” for each quan-
tization layer is an important issue. By significance
map of a quantization layer, we mean a binary map
showing the location of coeflicients in the deadzone,
versus those outside the deadzone. An example of sig-
nificance maps for quantization layers zero and one are
shown in Figure 1. As seen the significant coefficients
in layer i are a subset of those in layer i+ 1. As we will
see later, we can exploit this for efficient coding.

We will now show how hierarchical block coding
techniques can be used to code significant maps. The
basic hierarchical block coding technique we use was
presented in an early work by Kunt [1] for two-level
images. Kunt’s method begins by partitioning an im-
age into 16 x 16 blocks. If the block contains all zeros,
the block is coded as a “0”, and the algorithm proceeds
to the next block. Otherwise, the block codeword be-
gins with a “1”, and the block is subdivided into four
8 x 8 blocks, each of which are coded the same way. In
this manner, the coding proceeds in a recursive man-
ner until 1 x 1 blocks We show an example of coding
the first two layers of an 8 x 8 block in Figure 1. As
seen, the initial layer, layer 0, is coded using Kunt’s
original method. The “Bits:” indicate the coded bit-
stream, and the “Size:” indicates the size of the block
corresponding to the above bit.

To code the next layer, we use the information in the
previous layer to avoid coding redundant bits. Specifi-
cally, any bits that are marked “1” in the previous layer
are also assumed to be “1” in the following layer. For
example, consider layer 1 in Figure 1. We assume the
decoder has both bitstreams for layers 0 and 1, and
layer 0 has been successfully decoded. To decode layer
1, the decoder cycles through the layer 0 bitstream
again, filling in needed information as follows. The first
task in decoding layer 1 is to decide whether or not the
entire 8 x 8 block has any significant bits. Since layer 0
has significant bits, and layer 1 is a superset of layer 0,
layer 1 must also have some significant bits. Therefore,
the decoder assumes a “1” for the size 8 bit and does
not require additional information. Since the decoder
does not require additional information, the encoder
will not send any; this is indicated by the “” in the
size 8 bit for layer 1, indicating that no bits are sent.
The same process occurs for the first 4 x 4 block: the
corresponding 4 x 4 block in layer 0 is significant, so
nothing is coded for layer 1. The first 2 x 2 block, how-
ever, is empty in layer 0, and so the decoder does not
know a priori whether the block contains any pixels in
layer 1. Thus one bit must be sent to encode that infor-
mation. As seen, the block is empty in layer 1 also, and

18

Layer 0 Layer 1

T E [| |

171

B Significant

[J Not Significant

17
|

A\

L
Layer 0: \
Bits: 1 51;@] 1

Size: 8 4 2 2

Layer 1:

Bits: - - 0 -
Size: 8 4 2 2

I
CITTTT

1010 0 1
1111 2 2

1101 0 0 1 1 1010 0 1 1000 O
1111 4 4 4 2 1111 2 2 1111 2
fla

-0-0 0 - -~1-i1 0 0 1 1011 0}0 - - ~0-1 0 - -110 0
1111 2 2 111134 2 2 2 1111 2/4 4 2 1111 2 2 1111 2
e ———

Figure 1: Example of two layers of block coding

™, 8x8 sum block

i

sum of alt
pixel values

16 x 16 block of binary pixels

Figure 2: Straightforward implementation pyramid

so a 0 is coded for the size 2 bit in layer 1. Note that
this is the first coded bit in the layer 1 bitstream, as it
is the first piece of information that is not completely
known from layer 0.

3. IMPLEMENTATION ISSUES

In practice, we only use block coding to code significant
maps in quantization layers in which it is more efficient
than simple binary coding. In this section, we will de-
scribe implementation issues related to block coding
and subband filtering.

3.1. Simple Implementation of Block Coding

In our straightforward implementation of hierarchical
block coding in the previous section, we store each 16 x
16 block as a 2-D 16 x 16 array of 8-bit characters.
We then construct the 5-level pyramid data structure
shown in Figure 2. As seen, each element in the N x N
sum block of layer ¢ is the sum of four pixels from the
2N x 2N sum block of layer i — 1.

We then use this pyramid structure of sum blocks
to compute the coded bitstream as follows. The first
coded bit indicates whether there are any significant

map(0)
map(1)
map(2) o
map(3)”
C y <
5 J J
Q 4 4[4
N I HIL
4 <4) 4iA Lill=y
Ti&] 1) Llias LS,

Figure 3: Optimized memory rescan

pixels in the entire original 16 x 16 block, so we call
this bit the “size 16” bit. Since the final sum in the
pyramid is equal to the sum of the pixels in the origi-
nal 16 x 16 block, we can code the size 16 bit as a “0” if
the final sum is zero or “1” if the final sum is positive. If
the first bit is a “1,” we next code each of the four § x 8
sub-blocks in each quadrant of the 16 x 16 block recur-
sively. Coding proceeds in this manner until the entire
16 x 16 block is coded. Using this straightforward pro-
cedure, only one comparison is used to generate each
coded bit. However, generating the pyramid is rela-
tively time-consuming; to create an N x N sum block,
we need to perform 4N? memory reads to access the
elements to be added, 3N? additions, and N? memory
writes to store the sum block.

3.2. Optimization of Hierarchical Block Coding

To optimize our implementation, we minimize the num-
ber of memory operations by storing each 16 x 16 block
as a 1-D array of sixteen 16-bit short integers. This re-
duces the number of memory accesses required to read
the entire array from 256 to 16. For each 16 x 16 block,
we use bit masking to rescan each short integer to con-
tain 4 rows of 4 pixels each. We call the original array
“map” and the rescanned array “scan”. The rescan op-
eration is shown in Figure 3; for example, the fourth
element of the scan array is denoted “scan(3)” and com-
posed of the last four bits of each of the following map
elements: map(0), map(1), map(2), and map(3). Thus
we can access the original 16 x 16 block in 4 x 4 sub-
blocks, each of which corresponds to one element in the
scan array.

Using the scan array, our optimized coding algo-
rithm proceeds as follows. To code the size 16 bit, we
must determine whether the original 16 x 16 block con-
tains any significant pixels. This is equivalent to check-
ing whether any of the 16 elements in the scan array are

19

nonzero. One way of doing this would be to access all
16 scan elements, apply 15 bitwise OR, operations, and
check the result for a nonzero value. Alternatively, we
can use a trick to halve the number of memory accesses
by assigning a 32-bit integer pointer to the beginning
of the scan array. Since a 32-bit integer can contain the
data of two 16-bit short integers, we only need to check
8 consecutive integers using 7 bitwise OR’s to test if all
16 elements of the scan array are zero. We code the
size 16 bit as a “0” if the value of the resulting OR’s
is zero, “1” otherwise. Similar approaches can be used
for size 8 and size 4 bits.

The breakdown of decode times for one video frame
at 500 kilo bits per second on a 170 Mhz Ultra Sparc
workstation indicates that of the 50 mili-seconds total
decoding time, only 20 miliseconds is devoted to block
decoding.

3.3. Fast Subband Filtering

Three dimensional subband analysis and synthesis are
performed using separable applications of one dimen-
sional digital filters. In general, using a N tap filter
requires N multiplications, N — 1 additions, N mem-
ory loads and 1 memory store for every point in the in-
put data. Linear phase filters are typically used which
reduces the number of multiplications to | N/2]. In to-
day’s workstations it is not uncommon to have a large
number of registers where the multiplications and addi-
tions can be very efficiently executed, making memory
accesses a major cost of subband filtering. Since N —2
of the N input samples needed to compute the output
at time k are identical to the input samples needed to
compute the (k+1)st output sample, we can exploit the
register structure to only load two input sample from
memory per output points. As it turns out the same
two new input samples can be used for both the low
and high frequency subbands. Hence for every output
sample of high and low frequency subbands, we require
only two additional memory loads. Similar approach
can be used to reduce the number of memory loads for
subband synthesis.

4. PERFORMANCE COMPARISON WITH
MPEG-1

In this section, we compare the performances of the
scalable codecs to that of MPEG-1. We use the Berke-
ley Plateau Multimedia Group MPEG-1 codec (3], v.
1.5b, with search range of +7 pixels and a GOP pat-
tern of IBPB, except for md —mpeg at 3Mb/s in Table
2 which uses IP. The number of spatial decomposition
is 4 for the luminance component and 3 for each of the
chroma components of the scalable codec. The rate
control was chosen in such a way as to achieve con-
stant bit rate over each GOP in MPEG and equivalent

[R (kb/s) | 64 [256 | 500 [1000 | 1500 | 3000]
rd — t2 — bc, 24.0 | 240 | 20.0 | 15.2 12.5 9.9
rd —t2 — bey 240 | 214 | 185 | 14.5 | 12.8 | 10.6
rd — t2 — acq 24.0 | 18.7 | 11.0 7.0 5.4 3.9
mpegd 24.0 | 24.0 | 24.0 | 24.0 | 24.0 | 24.0
mpeg.exh. 0.4 0.4 0.4 0.4 04 0.4
mpeg.loge 16 | 16 | 16| 16 | 1.6 | 1.6
rd — t1 — beg 2401 240 199} 156 | 13.8 | 10.8
pp—tl—bca | 240 | 206 | 167 | 13.7 | 11.9 | 9.2
fb—1t1 —beq 240 | 21.3 | 17.0 | 136 | 11.8 9.6
md—t1—becqg | 24.0 | 21.3 | 18.0 | 14.4 | 12.4 9.5

Table 1: Encoding and decoding speed comparison.
Rates

Mb/s 05 | 1(t2) { 1(t1)| 1.5 | 3.0
rd —mpeg | 30.9 | 34.1 35.9 | 38.9
rd — be 317 35.2 35.2 | 37.0 | 39.3
pp—mpeg | 25.91 28.5 30.3 | 33.9
pp— be 25.1 | 28.4 26.8 | 30.1 | 33.0
fb—mpeg | 30.2] 33.1 34.9 | 38.0
fb—be 31.0 | 34.1 34.3 | 35.9 | 38.0
md — mpeg | 36.0 [38.7 40.7 | 42.9
md — be 37.0 | 404 38.9 | 42.1 | 45.0

Table 2: PSNR comparison.

GOP for the subband codecs.

Table 1 shows the speed performance of MPEG and
the 3-D subband codec for four different sequences at
six different rates. rd stands for the sequence “Raiders
of the lost ark”, pp for “Ping Pong”, fb for “football”
and md for “Mother Daughter”. Except for Raiders
that is 320 x 240, all the other sequences are 352 x 240.
t — 1 and t — 2 denote one and two layers of temporal
decompositions respectively. ac stands for scalable cod-
ing with arithmetic coding and be stands for scalable
coding with block coding. mpeg.exh, and mpeg.log.
stand for MPEG encoding with exhaustive and loga-
rithmic search respectively. The speed tests were done
on a 170 Mhz ultra sparc workstation. The decoding
speeds include disk access from a local disk, dithering
and display, while the encoding speeds exclude disk ac-
cess. This is because in most real time encoding appli-
cations, raw video will be read from a video camera and
not disk. Finally, multi-threading techniques were used
in order to overlap blocking operations of compressed
video input and video frames output with actual com-
pression, providing better speed performance.

As seen, depending on speed, the subband codec
with block encoding is 20 to 60 times faster than ex-
haustive search MPEG encoding. Even though us-

20

ing logarithmic instead of exhaustive search speeds up
MPEG encoding by a factor of 4, it is still consid-
erably slower than scalable codec with block coding.
The speed of both scalable codecs, based on arithmetic
and block coding are for the most part symmetric with
respect to encoding and decoding. In practice, the
decoding is slightly slower than encoding because it
has to deal with clipping, YUV to RGB conversion,
dithering and display. As seen, the block coding ap-
proach is up to twice as fast as arithmetic coding ap-
proach. Decreasing the number of temporal decompo-
sitions from 2 to 1, speeds up the encoding/decoding
of the block coder. Finally, there is some variability
across sequences as far as speed is concerned. This can
be attributed to varying amount of motion in the three
sequences, and the fact that the Raiders sequence has
10 % fewer pixels than the other sequences.

Table 2 shows the luminance PSNR performance of
the 3-D subband codec using block coding and MPEG-
1 for four video sequences at rates 0.5, 1, 1.5, and 3
Mb/s. The scalable codec uses two layers of temporal
decomposition unless otherwise stated. It is important
to emphasize that for the scalable 3-D subband codec
one bit stream at 3 Mb/s is generated once and its sub-
sets are extracted to obtain other bit streams at other
bit rates. On the other hand, for MPEG, a whole differ-
ent bit stream is generated at the encoder for each bit
rate. As seen, except for Ping Pong, the scalable codec
performs as good or better than MPEG codec for the
other three sequences. Decreasing the number of tem-
poral decompositions from two to one sometimes ad-
versely affects the SNR, and improves encode/decode
speed.

Finally, note that it is possible to improve the PSNR,
of the 3-D scalable codec described here, by applying
pan compensation techniques described in [2]. How-
ever, this is at the expense of increased computational
complexity at the encoder.

To summarize, the proposed scalable codec outper-
forms MPEG in encoding speed by an order of mag-
nitude without significant loss in PSNR. The scalable
codec with block coding also achieves reasonable de-
coding speeds, making it a viable choice for real time,
software only, interactive video compression applica~
tions.

5. REFERENCES

[1] M. Kunt, “Block Coding of Graphics: A Tutorial Re-
view,” Proceedings of the IEEE, Vol. 68, No. 7, July
1980

D. Taubman and A. Zakhor, “Multirate 3-D subband
coding of video,” IEEE Transactions on Image Pro-
cessing, Sept. 1994, vol. 3, no. 5, pp. 572-588

K. Patel, B. Smith, L. Rowe, “Performance of a Soft-

ware MPEG Video Decoder,” Proceedings of the ACM
Multimedia ’93

(2]

