
A REAL-TIME SOFTWARE DECODER FOR SCALABLE VIDEO ON

MULTI-PROCESSORS

Wai-tian Tan Avideh Zakhor�

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720

e-mail: dtan@eecs.berkeley.edu, avz@eecs.berkeley.edu

ABSTRACT

Increasing heterogeneity of future networks is

likely to result in transmission links with widely

di�erent available bandwidths. Scalable video

compression has been shown to be an e�ective tool

for video communication across these heteroge-

neous networks. For instance, the scalable algo-

rithm described in [2, 3] can generate one em-

bedded bit stream with tens of available bit rates

ranging from tens of kilo bits to several mega bits

per second. A multi-threaded software decoder for

scalable video described in [2] is developed. The

software can be con�gured for systems with vary-

ing physical memory sizes and di�erent number

of processors. Experiments were performed on a

Sparc-20 workstation with 4 processors. Compar-

isons with results obtained from using 1 processor

suggest that a speed up factor of 2 to 2.5 times

can be achieved with all CPU's approximately 75

% loaded. As expected, the decoding speed scales

with compressed video bit rate and picture size.

1 INTRODUCTION

With ever more video information stored in dig-

ital format, real-time video decoding has be-

come an indispensable capability for worksta-

tions. The simplest application would be play-

ing video archives from either a CD-ROM or over

the network. Another example would be video

conferencing. Currently, most real-time decoding

mechanisms resort to expensive special purpose

hardwares that become outdated easily. A soft-

ware implementation is clearly superior not only

in being cheaper, but also in being easily portable

�This work has been supported by SUN Microsystems,

Philips, California State Program MICRO and O�ce of

Naval Research

to virtually any machine with performance scaling

automatically with processing power.

Real-time MPEG decoding is already happen-

ing [1]. However, MPEG lacks the multi-rate,

multi-resolution capability as often desired for

transmission over heterogeneous networks, and

therefore needs to resort to transcoders for video

delivery through low bandwidth links. Scalable

video bit streams as described in Section 2, on

the other hand, can gracefully degrade to lower

bit-rates by simply dropping selected layers [2,

3]. For transmission over networks whose loads

are bursty, having multi-rate property means we

could simply decode at a lower rate during peri-

ods of high load and resume at higher rate during

periods of low network load, without introducing

jerkiness on the video being decoded.

Recently a scalable video compression algo-

rithm has been proposed [2] that not only oper-

ates at a wide range of bit rates, from tens of

kilo bits to several megabits per second, but also

provides a �ne granularity of available bit rates.

In addition, these properties are achieved with-

out loss of compression e�ciency as compared

to standard algorithms such as MPEG2. How-

ever unlike MPEG, the scalable algorithm in [2]

requires symmetric computation power in encod-

ing and decoding, making its decoding complexity

quite high. For instance, an implementation of [2]

on a Sparc-20 with 1 processor could decode only

about 6.1 frames per second with color at quarter

SIF resolution, i.e. 320�240. The use of multiple

processors, which is arguably the most econom-

ical way to boost processing power, is one way

to achieve real-time software decoding of scalable

video bit streams.

For general purpose computers, concurrency is

better exploited using multiple threads within the

same process rather than the more conventional



T
-
H

S
-
H
H

S
-
H
L

S
-
L
H

T
-
H

T
-
H

T-L T
-
H

Y9 Y10 Y11

T-L T
-
H

T
-
H

Y15 Y16 Y17

T-L T
-
H

Y12 Y13 Y14

S
-
H
H

S
-
H
L

S
-
L
H

T
-
H

T
-
H

T-L T
-
H

Y18 Y19 Y20

T-L T
-
H

T
-
H

Y24 Y25 Y26

T-L T
-
H

Y21 Y22 Y23

S
-
H
H

S
-
H
L

S
-
L
H

S
-
L
L

Y8

S
-
L
L

T-L

T-H
T-L T

-
H

Y2 Y3

T-L T
-
H

Y4 Y5

T
-
H

Y27 Y28 Y29

T-L T
-
H

T
-
H

Y33 Y34 Y35

T-L

Y30 Y31 Y32

S
-
H
H

S
-
H
L

S
-
L
H

S
-
L
L

Luminance (Y)
320x240, 24 fps

160x120, 24 fps

80x60, 24 fps

40x30, 12 fps

40x30, 24 fps

T
-
L

T
-
H

Y0Y1

T-L T
-
H

Y6 Y7

T
-
H

T-L T
-
H

Figure 1: Spatio-temporal subband structure. The letters S and T stand for \Spatial" and \Temporal"

decompositions. L and H stands for \Low" and \High" frequencies.

method of using multiple processes. The main

motivation is that threads share the same ad-

dress space and therefore have no need for ex-

pensive inter-process communications. Threads

also require fewer kernel resources during execu-

tion and, depending on the particular implemen-

tation, do not necessarily involve a system call

for switching [4]. A multi-threaded architecture

can also provide better CPU utilization by over-

lapping CPU-intensive video decoding with I/O

operations that are often blocking. An operation

is called blocking when the program issuing it can-

not continue execution until the operation is �n-

ished.

In this paper, we will describe the architecture

of a real-time software decoder for the scalable

video compression algorithm in [2], using multi-

threading techniques, on a Sparc-20 with 4 pro-

cessors. We will describe the resources needed for

our implementation in section 4 and compare the

results obtained on 4 processors to that obtained

using only 1 processor in section 5.

2 THE VIDEO BIT STREAM

Video source at 24 frames per second is digi-

tized into SIF size YUV video frames. The video

frames are then encoded using the method de-

scribed in [2]. Three-dimensional subband analy-

sis is �rst performed on the video frames to gen-

erate a set of spatio-temporal subbands. Depend-

ing on how many levels of spatial decomposition

one employs, these subbands can be of di�erent

sizes and visual importance. Each subband coef-

�cient is then progressively quantized into layers

where successive layers are a re�nement of the

previous layers. The redundancy in every layer is

well exploited using conditional arithmetic cod-

ing [5] where the value of a subband coe�cient

in any given layer is coded conditioned upon the

currently available values of its neighbors. Since



arithmetic decoding is a sequential process, it is

important to divide larger subbands into smaller

subband blocks and then encode these blocks inde-

pendently of each other so as to limit propagation

of transmission errors and to facilitate parallelism

in computation.

Fig. 1 shows the subband hierarchy for the lu-

minance component used in this paper. It is ob-

tained by applying 2 levels of temporal decompo-

sition and 4 levels of spatial decomposition. The

chroma components are similar except with only

3 levels of spatial decomposition. All subbands of

high temporal frequencies are coded using layered

intra-frame PCM and zero coding techniques in

[3] while the low temporal, low spatial frequency

subband Y0 is coded using layered DPCM meth-

ods described in [3]. Coe�cients in the low tem-

poral, high spatial frequency subbands are coded

using inter-frame techniques with reference to the

corresponding subband coe�cient in the previous

frame in the same subband. For example, the

subband Y9 in Fig. 1 is coded with reference to

previously coded frame in subband Y9 while the

subbands Y0 and Y10 are not.

In general, employing L levels of temporal hier-

archical decomposition requires the subbands of

2L frames to be decoded together. The experi-

ments described in this paper assume L = 2 to

achieve low latency. Thus, we work with decoder

bu�ers which are large enough to hold the sub-

band coe�cients of 4 frames.

By simply discarding some quantization lay-

ers, we can get a coarser representation of the

subband coe�cients and operate at a lower data

rate. Monochrome decoding is achieved by dis-

carding the chrominance components. Decoding

at smaller resolution is achieved by ignoring ap-

propriate high spatial frequency subbands.

3 DECODER ARCHITECTURE

The decoder, being the inverse of encoder, needs

to get the compressed video stream from either

network or local storage, arithmetically decode

the received stream to reconstruct the subband

coe�cients which are then used to synthesize back

the video frames to be displayed. Each of these

tasks de�nes a functional unit which is imple-

mented using one or more threads, all running

concurrently.

Reconstructed
Subband Coefficients

Subband Syntheis Unit

(One or more threads)

Display Unit

Arithmetic
Decoding
Unit

Reference
Subband
Coefficents

D
e
c
o
d
i
n
g
 
T
h
r
e
a
d

D
e
c
o
d
i
n
g
 
T
h
r
e
a
d

D
e
c
o
d
i
n
g
 
T
h
r
e
a
d

D
e
c
o
d
i
n
g
 
T
h
r
e
a
d

Scalable Video Stream

Get Data Unit

Selected Layers of Bitstream

: FIFO Queue

Figure 2: Architecture of Scalable Video Decoder

Software

3.1 Get Data Unit

The Get Data Unit in Fig. 2 continuously reads

the video bit stream, discarding layers that are

not used for the bit rate the system is currently

decoding.

The straight-forward implementation of issuing

a read request and waiting for the data is unde-

sirable for traditional single-threaded implemen-

tations. This is because it may take a signi�cant

time before the requested piece of data arrives,

as in the case of reading from a remote device or

from a network connection, idling precious com-

puting power. The fore-mentioned blocking I/O

however, has the advantage of being able to re-

trieve data almost immediately as it arrives. This

feature is less important in a typical reading from

disk applications where we have random access

to the data but proves to be essential if one is

getting the bit stream from a network. This is

because many operating systems have small I/O

bu�ers that can only hold a fraction of a second's

worth of video. This de�nes a small time frame



within which one must either retrieve data from

the bu�er or face loss due to bu�er overow.

To avoid CPU idling, single-threaded programs

often used non-blocking I/O to provide better

utilization of computing resources. The price

is increasing complexity and failure to retrieve

network data as they arrive. For instance,

asynchronous I/O as provided in some UNIX

implemetations is an attractive option at the

price of an interrupt per read to notify pro-

gram of the availability of data. To summa-

rize, single-threaded implementations either su�er

from idling in the form of blocking I/O or over-

heads of non-blocking I/O.

For our multi-threading implementation, the

Get Data Unit is a thread itself and reads data

into a circular bu�er using blocking operations.

Before data arrives, only the unit is blocked and

other threads can continue to execute. The Get

Data Unit is implemented with a higher priority

than other threads so that it can retrieve data

from network as soon as possible. Thus, the

implementation has the advantage of not idling

the CPU as well as being able to retrieve data

promptly.

3.2 Arithmetic Decoding Unit

The Arithmetic Decoding Unit creates and op-

erates on decoder bu�ers. Compressed video is

passed, not copied, from the Get Data Unit and

is dispatched to a speci�ed number of threads

for decoding. All the subband blocks are divided

among the decoding threads with the constraint

that no two threads can work on the same sub-

band block. Every decoding thread knows which

subband block it is decoding and writes the result

directly back to the corresponding bu�er. The de-

coded subband coe�cients are passed to the Sub-

band Synthesis Unit.

A master-slave scheme is used in which one

thread is in charge of dispatching subband blocks

to other threads for decoding. Because the cost

of dispatching might exceed the cost of decoding

for smaller subbands blocks, only bigger subband

blocks are dispatched,

Arithmetic decoding will not start unless the

Arithmetic Decoding Unit has received enough

compressed video data equivalent to a whole de-

coder bu�er. The unit also makes sure that all

the data in the decoder bu�er is processed be-

fore proceeding to the next by having threads

that �nish early to wait. This not only enables

the current decoder bu�er to be processed faster,

but also puts smaller memory requirements on the

unit. Concurrency is derived from the fact that

subband blocks can be decoded independently of

each other, rather than the ability to process sub-

band blocks in parallel.

Four threads are used for arithmetic decoding

in the experiments that we carried out. Using

more threads will incur higher cost for synchro-

nization and is justi�able only if one has more

CPU.

3.3 Subband Synthesis Unit

The Subband Synthesis Unit reconstructs the

video frames and converts it from YUV format to

RGB format for the Display Unit to display. The

reconstruction of YUV frames involves mainly �l-

tering operations and as such, can easily admit a

parallel implementation. More than 1 thread is

used for subband synthesis only when the phys-

ical time for arithmetic decoding of a frame us-

ing many threads is shorter than that of subband

synthesis using 1 thread. This is because using

more threads adds more overheads. If the de-

coder is busy doing arithmetic decoding most of

the time, i.e. in the high data rate, low resolu-

tion scenario, performance is better with only 1

thread for subband synthesis. Depending on the

relative computational requirements for subband

synthesis and arithmetic decoding, more threads

are used for subband synthesis, particularly in the

low data rate, high resolution case.

3.4 Display Unit

Outputting video to the display device can take

considerable time if we cannot directly write to

the device bu�er, as is often the case. In an X

windows implementation, it involves transmission

of tens of uncompressed video frames per second

if shared memory is unavailable or not used. For

instance, using a plain X11 routine to display an

8-bit SIF size frame takes tens of milli-seconds on

a Sparc 20. The implementation of the Display

Unit as a separate thread is necessary in this case

to avoid spending tens of milli-seconds waiting for

one frame to be put to the display. With the

shared memory extension of X windows, we have

to wait for acknowledgement from the X server

before putting up another frame. With the cod-

ing scheme of [2, 3], the time it takes to decode

one frame varies considerably and it is sometimes



possible that a frame is ready for display before we

receive acknowledgement for the previous frame.

In that case, one has to wait and idle. The im-

plementation of the Display Unit as a separate

thread allows the rest of the decoder to proceed

while it waits for completion of the display.

3.5 Connecting Units

No two units can operate on the same piece of

data at any one time to guarantee data integrity.

Units are connected using queues of short lengths,

typically 2 or 3, that act as both input and out-

put bu�ers. While requiring more memory, this

design provides better performance because it al-

lows for statistical variations in the �nishing times

of the units. Data processed by one unit is passed

to the next unit using these queues. When a unit

cannot get from a queue or pass data to a queue,

it blocks until the operation is possible. Note that

we have a linear structure of units and as such,

there will always be at least one unit running.

However, for faster and smoother decoding, we

use su�cient threads in the most computationally

expensive unit to make sure it is never blocked.

Fig. 2 may appear to suggest the use of pipe-

lining, but since computing resources are dynam-

ically allocated to the units that need them and

not tied to a particular unit, there is no bottle-

neck if one unit performs slower than the others

unless the number of threads in all the unblocked

units is less than the number of processors.

In our current implementation, computational

load cannot be evenly distributed among all arith-

metic decoding threads because subband blocks

of the same size may have di�erent number of

layers. Also, the thread implementation that is

available on our machine is non-preemptive in the

sense that a thread that seizes a processing unit

will run into completion before another thread can

use the same processing unit, unless the execut-

ing thread explicitly relinquishes control. Thus

not all threads are truly executed concurrently

but are serviced one by one.

4 RESOURCE REQUIREMENTS

In this section, we will estimate the extra mem-

ory that is needed to run our decoder on multi-

processor machines. For the architecture de-

scribed in section 3, the Arithmetic Decoding

Unit always keeps a decoder bu�er to work on.

For arithmetic decoding to run concurrently with

other units, we need at least another decoder

bu�er. Thus, the absolute minimum number of

decoder bu�ers needed is two. For decoding at

SIF resolution and full color, and employing 2

levels of temporal hierarchical decomposition, one

decoder bu�er requires:

display size � bytes per pixel

� number of frames per decoder bu�er

= (240� 320)� 2� 4

= 614.4 k bytes

for luminance and 614.4/2 = 307.2 k bytes for

both chroma components. This is because each

chrominance component is sub-sampled by 2 both

in the vertical and horizontal directions. Thus we

require 921.6 k bytes per extra decoder bu�er.

The number of bytes per pixel is 2 because the

subband coe�cients are stored as 16 bit short in-

tegers while decoding.

Because the low temporal, high spatial fre-

quency subbands are inter-frame coded, it is nec-

essary to store the corresponding reference frames

while decoding. For the reference subbands, we

need at most 921.6/4 = 230.4 k bytes which is big

enough to hold all low temporal frequency sub-

bands.

For quarter SIF resolution, the memory re-

quired per bu�er is one quarter that of SIF resolu-

tion. For monochrome decoding, the bu�er sizes

are 2/3 that of color decoding.

In practice, the best con�guration depends on

the actual number of processor and physical mem-

ory a system has.

5 RESULTS

Before describing the results, it is important to

point out that even though arithmetic coding pro-

vides good compression ratio, it is computation-

ally expensive. When decoding at 3 M bits/s,

most of the computation in our implementation

resides in the layered conditional arithmetic de-

coding, accounting for about 50 to 70 % of CPU

time depending on resolution and whether we in-

clude color. Actual synthesis of the frames from

subband coe�cients takes less than half of what

arithmetic decoding takes at 3 M bits/s.

Tables 1 - 4 compare the decoding rates our

decoder performs as compared to an earlier uni-

processor implementation, running on the same

Sparc 20 station. The uni-processor version has



Data Rates 3 M bits/s 1 M bits/s 500 k bits/s 300 k bits/s

Frame Rates with 4 Processors 5.0 8.0 10.5 13.0

Frame Rates with 1 Processor 1.9 3.5 5.2 6.5

Table 1: Decoding Rates at SIF Resolution with Color

Data Rates 3 M bits/s 1 M bits/s 500 k bits/s 300 k bits/s

Frame Rates with 4 Processors 6.8 10.5 11.5 15.0

Frame Rates with 1 Processor 2.7 4.3 6.5 8.5

Table 2: Decoding Rates at SIF Resolution, Monochrome

Data Rates 3 M bits/s 1 M bits/s 500 k bits/s 300 k bits/s

Frame Rates with 4 Processors 8.0 13.8 18.0 21.2

Frame Rates with 1 Processor 3.3 6.1 8.8 10.0

Table 3: Decoding Rates at Quarter SIF Resolution with Color

Data Rates 3 M bits/s 1 M bits/s 500 k bits/s 300 k bits/s

Frame Rates with 4 Processors 13.5 19.5 24+ 24+

Frame Rates with 1 Processor 6.0 9.0 12.0 14.5

Table 4: Decoding Rates at Quarter SIF Resolution, Monochrome

one processor fully loaded while decoding whereas

the multi-processor version has all 4 CPU about

75-80% loaded on the average. More arithmetic

decoding threads are used for high than low bit

rate decoding to reduce overhead.

Note that decoding rates are higher than that

obtained with a single processor by 2 times in the

monochrome, low bit rate regime, to 2.5 times in

the color, high bit-rate regime. The inclusion of

color enhances concurrency by having simultane-

ous decoding of chrominance and luminance com-

ponents. At higher bit rates, more computation

is required per subband block and thus a lower

percentage overhead for decoding in parallel.

When stepping down from SIF resolution to

quarter SIF resolution, decoding rates are in-

creased by 60 % at 3 M bits/s and 63 % at 300 k

bits/s. One reason is that it takes 4 times more

operations to synthesize one video frame from its

subband coe�cients at SIF resolution and this

cost becomes more important at lower bit rates.

Another reason is that it takes less computation

to decode more quantization layers of fewer sub-

bands than fewer quantization layers of more sub-

bands. This has to do with the fact that for

a �xed total number of bits, it takes longer to

decode more shorter arithmetic codewords than

fewer, longer ones.

For quarter SIF resolution at 1 M bit/s,

with color, we can currently decode at 13.8

frames/second which is half the rate that is

needed for real-time decoding.

REFERENCES

[1] L.Rowe, K.Patel, B.Smith, and K.Liu,

\MPEG Video in Software: Representation,

Transmission, and Playback," IS&T/SPIE In-

ternational Symposium on Electronic Imag-

ing: Science and Technology, San Jose, Febru-

ary 1994.

[2] D.Taubman and A.Zakhor, \Highly Scalable,

Low-delay Video Compression," Proceedings

ICIP, 1994, Vol 1, pp 740-744.

[3] D.Taubman and A.Zakhor, \Multirate 3-D

Subband Coding of Video," IEEE Trans. Im-

age Proc., September 1994.

[4] M.Powell, S.Kleiman, S.Barton, D.Shah,

D.Stein, and M.Weeks, \SunOS Multi-

threading Architecture," Proc USENIX Win-

ter Conference, 1991.

[5] G.Langdon and J.Rissanen, \Compression of

Black-White Images with Arithmetic Cod-

ing," IEEE Trans. Commun., vol. COM-29,

pp 858-867, June 1981.


