
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL. 4,  NO. 3, JULY-SEPTEMBER 1998 243

Interactive Volume Navigation
Martin L. Brady, Member, IEEE, Kenneth K. Jung, Member, IEEE,
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Abstract—Volume navigation is the interactive exploration of volume data sets by “flying” the viewpoint through the data, producing
a volume rendered view at each frame. We present an inexpensive perspective volume navigation method designed to be run on a
PC platform with accelerated 3D graphics hardware. The heart of the method is a two-phase perspective raycasting algorithm that
takes advantage of the coherence inherent in adjacent frames during navigation. The algorithm generates a sequence of
approximate volume-rendered views in a fraction of the time that would be required to compute them individually. The algorithm
handles arbitrarily large volumes by dynamically swapping data within the current view frustum into main memory as the viewpoint
moves through the volume. We also describe an interactive volume navigation application based on this algorithm. The application
renders gray-scale, RGB, and labeled RGB volumes by volumetric compositing, allows trilinear interpolation of sample points, and
implements progressive refinement during pauses in user input.

Index Terms—Volume navigation, volume rendering, 3D medical imaging, scientific visualization, texture mapping.
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1 INTRODUCTION

OLUME-rendering techniques can be used to create in-
formative two-dimensional (2D) rendered views from

large three-dimensional (3D) images, or volumes, such as
those arising in scientific and medical applications. In a typi-
cal volume-rendering scenario, rays are cast from an obser-
vation point outside the volume through the entire volume
to obtain a 2D view of the whole data set. In dealing with
large 3D data sets, this approach has several limitations.
First, it can be difficult to discern small, complicated internal
structures within a large data set when generating an image
from the entire volume. Volumetric compositing techniques
can be used to display some of the internal data via translu-
cency effects, and cutting planes can aid in removing some of
the occlusions. However, it can still be difficult to locate and
isolate internal structures using these techniques. Second, an
animated sequence of views sometimes reveals more infor-
mation than a set of static images, even if the quality of the
individual frames is reduced. However, interactive update of
the point of view is often precluded for large volumes due to
the prohibitively long time needed to render a single image.
Volume navigation [2], [3] addresses these limitations by plac-
ing a viewing frustum of limited depth inside the volume
data set. The volume acts as a virtual environment in which
the user can navigate (translate and rotate the point of view).
Navigating through the volume allows more flexibility in
avoiding occluding objects and focusing on structures of in-
terest. Limiting the field of view also reduces the computa-
tional burden in rendering an individual frame.

The methods we consider are best suited for exploring
large, complex, optically dense volumes and searching for
relatively small features of interest. The data set should
contain regions of low opacity through which to navigate
the viewpoint. In order to convey a sense of smooth motion,

the views should be produced at interactive rates. The
complete data set may exceed the system’s memory, but the
amount of data enclosed by the view frustum is assumed to
fit within main memory. The goal is to quickly browse the
volume looking for areas of interest using interactive 3D
movements. We also assume that some reduction in the
quality of individual frames can be tolerated when moving
at this high rate. During any pause in motion, the view
should be progressively improved, so that once a possible
area of interest is located, a high-resolution view from the
current viewpoint is obtained.

An application for this technique arises in the analysis of
3D medical data. Volume navigation can be used to simu-
late an endoscopic examination of structures such as bron-
chial passages, blood vessels, or the intestinal tract using
3D radiological images [8], [16], [19], [21], [10]. The “hol-
low” areas of anatomy through which a catheter would
normally move serve as the regions of low opacity required
for navigation. This digital simulation can be more flexible
than the physical procedure, allowing one to traverse com-
plex branching structures, pass through solid objects, or
render obscuring objects transparent.

In this paper, we describe an inexpensive volume navi-
gation method designed for a standard PC platform with
accelerated 3D graphics hardware. The computation is
accelerated by taking advantage of the fact that views are
along a continuous path, and adjacent viewing sites differ
very little. Much of the work done to produce a view at a
given site can be stored and reused to produce approxi-
mate views at nearby locations, thus amortizing the cost
to render a view over many frames. A raycasting algo-
rithm is presented that exploits this strategy to generate a
sequence of approximate views in far less time than
would be required to compute them individually. Fur-
thermore, in order to avoid delays for loading voxel data
from disk, a subcube of data enclosing the view frustum is
maintained in main memory and updated incrementally
as the frustum moves.
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An overview of the volume navigation problem and our
approach is given in Section 2. The two-phase algorithm for
perspective volume rendering is presented in Section 3 and
applied to volume navigation in Section 4. The incremental
data I/O algorithm that completes the core of our interac-
tive navigation strategy is described in Section 5. In Section 6,
we discuss previous work in accelerating perspective ray-
casting and relate it to our algorithms. Section 7 describes
the implementation and analysis of a Windows® NT-based
volume navigation application using our algorithms, fol-
lowed by some concluding observations in Section 8. A
preliminary version of this work that primarily described
the two-phase perspective raycasting algorithm appeared
in [4].

2 VOLUME NAVIGATION

A volumetric data set consists of an Nx × Ny × Nz three-
dimensional array of voxels. The sampling intervals along

the three coordinate axes are σx, σy, σz, respectively. We

assume that the voxels are isotropic, i.e., σx = σy = σz = σ in
this paper. Distances are written in units of σ, the voxel
spacing. This assumption simplifies some of the details of
the algorithms. However, the algorithms extend naturally
to anisotropic data.

The view frustum is much smaller than the volume, and
the viewpoint is typically placed within the volume at an
arbitrary position, p, and orientation, v. During navigation,
an arbitrary path is traced through the volume as a se-
quence of volume rendered views at a discrete sequence of
viewing sites, (pi, vi), i = 1, 2, 3, … whose values are not
known in advance. The depth of view is fixed, i.e., rays are
cast to a distance d from the viewpoint. In a highly trans-
parent region, this may cause the rays to clip before they
have saturated. In order to see a structure that is further
than d from the viewpoint, the user must move toward it.

In general, a navigation trajectory will tend to string to-
gether a sequence of incremental steps in a given direction
or incremental rotations about a given axis. This coherence
between nearby frames can be used to accelerate their com-
putation. Brady, et al. [3] proposed an algorithm for volume
navigation in which a dense set of short parallel ray seg-
ments are rendered, and are then used to construct com-
plete rays from many neighboring points of view. Interme-
diate results from the computation of a given view are used
to quickly compute f successive frames, after which a fresh
set of intermediate results must be produced. By amortizing
this work over the f frames generated, approximately a
factor f speedup is obtained in the core-rendering portion of
the computation. The method is restricted to parallel-
projected volume rendering, however. Note that parallel
projection is commonly used for rendering “external” views
of volume data and is often sufficient in that case, since the
distance from the viewer to the data is relatively large. This
assumption is violated in the extreme in the case of volume
navigation. Although useful information can certainly be
obtained from parallel projections in this scenario, perspec-
tive projection is required if the views are to look natural,
since most of the information is near the viewer. We extend

the general idea of computing multiple views from stored
volume-rendered ray segments to perspective geometry.
This requires a significantly different approach since the
previous method relies heavily on the fact that stored ray
segments are parallel. The two-phase perspective raycast-
ing algorithm is described in the following section.

3 TWO-PHASE PERSPECTIVE VOLUMETRIC
RAYCASTING ALGORITHM

Perspective raycasting algorithms usually cast rays from
the viewpoint through each pixel in the view plane [11],
[13]. Each ray is computed iteratively, by determining the
next sample location, sampling, and then compositing the
sample onto the current ray. “Sampling” refers to all of the
steps required to obtain red, green, blue, and opacity val-
ues at a specific point. This includes interpolation of the
voxel data, mapping the voxel value to RGBA, and possi-
bly the application of additional shading or lighting
equations (see [6]). Any front-to-back rendering operation
can be applied in the “Compositing” step. The volumetric
compositing equation [18] is used in the implementations
in this paper.

The raycasting algorithm is divided into two phases. In
the first phase, short ray segments are cast, computing a
composite color and transparency (i.e., one minus opacity)
for each segment. These segments are then used to con-
struct approximations of the full rays in the second phase.
For simplicity, it is assumed in the following discussion
that the sampling interval along the rays is equal to σ (the
voxel sampling interval), but in fact, this rate can be arbi-
trarily specified.

In Phase 1, the sample points are divided into L levels,
0 ≤ l < L, based on their distance from the viewpoint. The
distance of the first sample of level l from the viewpoint is

defined as Dl. Level 0 consists of a set of ray segments cast

from the viewpoint (D0 = 0) to a distance D1 – 1. Level 1

consists of a set of ray segments cast from distance D1 to

distance D2 – 1, and so forth. Under this assumption, each

segment in level l consists of Dl+1 – Dl samples. We refer to
the set of segments in level l computed from position p in

viewing direction v as Sl(p, v). The set of all segments at
all levels is denoted S(p, v). These terms are shortened to

Sl or S, respectively, when position and direction are un-
derstood.

If we choose to sample each level at the screen size, then
Phase 1 results in a set of L two-dimensional arrays of seg-
ments, each of size m × m. These planes can then simply be
alpha blended to form the final view in Phase 2. This would
amount to a simple reordering of the sample and composite
operations from the basic brute-force raycasting algorithm
[11], and would produce the same output, using the same
number of sampling steps. In general, however, each level
can be sampled at different resolutions. Let Wl × Hl specify
the horizontal and vertical resolution of the segments cast
in level l. Phase 2 resamples each level to screen resolution
and then composites the resulting m × m arrays to form
the final view. (Alternatively, the overall resampling work
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can be reduced by resampling each level l to Wl+1 × Hl+1
and then compositing with level l + 1, iterating from l = 0
to L – 2. This is not used in our implementation since the
resampling step is performed via 2D texture mapping on
the graphics accelerator hardware.) Algorithm 1 below
gives a high level overview of the two-phase algorithm.

ALGORITHM 1. Two-Phase Perspective Raycasting Algo-
rithm.

/* Phase 1 */
for l from 0 to L – 1

/* Generate a Wl × Hl array of segments at level l */
for d from Dl to Dl+1 – 1

Sample a Wl × Hl array of rays at distance d from the
viewpoint.
Composite the sample array onto the back of the ar-
ray of level l segments, Sl.

end for
end for

/* Phase 2 */
for l from 0 to L – 1

Resample the segments Sl at screen resolution.
Composite onto the back of the current view.

end for

Observe that in brute-force perspective raycasting, the
lateral sampling rates vary in proportion to the distance
from the viewpoint. An advantage of the two-phase algo-
rithm is that it allows a form of adaptive sampling. Each
of the layers can be sampled in the horizontal and vertical
directions at a rate near that of the underlying data (see

Fig. 1). Novins et al. [17], proposed a somewhat similar
adaptive sampling approach, with the primary objective
of avoiding undersampling of distant sample points by
splitting rays and averaging their results. Conversely, our
main concern is to avoid oversampling in the regions near
the viewpoint, since we are immersed in the data and
most of the information is nearby. Thus, we generally set
the resolution of each level so that the lateral sampling
rates are similar at all levels. Each level’s dimensions, Wl ×
Hl, are then proportional to its distance from the view-
point, Dl. This means that the first few levels, being near
the viewpoint, may cast very few rays. This results in
some reduction in the total rendering time. More signifi-
cant for volume navigation is the fact that most of the
reduction in the sampling time is from levels near the
viewpoint.

Phase 2 of Algorithm 1 can be phrased as a 2D texture-
mapping problem. Each array of rendered segments Sl(p, v)
from Phase 1 is defined as a 2D texture, Tl, in Phase 2. For
each level (0 < l < L), a rectangle Rl is drawn at distance Dl,
perpendicular to the view direction, and texture Tl is
mapped into the rectangle (see Fig. 1). Level 0 is an excep-
tion, since D0 = 0 and thus R0 would not be visible from
viewpoint p. Its rectangle is drawn at distance 1, although
anywhere between 0 and D1 will suffice. The rectangles are
drawn in sequence from front to back, and the texture at-
tributes are set so that the rectangles are alpha-blended
onto the view to produce a volume-rendered frame.

The two-phase raycasting algorithm is compared to
brute-force perspective raycasting below. Brute-force
perspective raycasting is a special case of the two-phase
algorithm in which W × H perspective-correct rays are
cast to depth D within a single level. For comparison,
consider a two-phase partition of L levels of equal-length
segments, i.e., D i D Li = , i = 0, 1, …, L − 1. The resolu-
tion of each level is chosen to maintain a similar lateral
sampling rate at every level:
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sampling steps in the first phase. In addition, the second
phase requires W ⋅ H(L − 1) pixel resampling and blending
steps.

The performance of the standard and two-phase per-
spective raycasting algorithms is shown in Table 1 for
8-bit gray and 32-bit RGB-label data. Times were meas-
ured on one CPU of a dual-CPU, 300 MHz Intel Pentium®

Fig. 1. 2D illustration of the segments computed by the two-phase
algorithm. Solid horizontal lines represent the rectangles into which the
segments are to be mapped.
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II platform, running the Windows® NT 4.0 operating
system. The system was equipped with 256 MB RAM
and a NeTpower ULTRAfx2™ graphics accelerator card.
The field of view is 60º, the number of levels is 10, and
each segment consists of 16 samples. W and H are set so
that the maximum ray separation is approximately σ ,
σ 2 , or σ 3 , i.e., one, two, or three rays per voxel. These
values are chosen to illustrate the algorithms starting at the
minimum resolution required to sample all of the voxels,
and compare to successively better resolutions. The depth
of D is the largest that does not exhaust our system’s main
memory. With this set of parameters, the two-phase algo-
rithm issues 0.385 times as many sampling steps as the
brute-force approach. The total computation time is re-
duced by a factor of about 0.43 on average. Note that the
second phase, implemented as a 2D texture-mapping
problem, is accelerated in the graphics hardware.

In the two-phase algorithm, some of the ray segments
are obtained by bilinear interpolation from the neighbor-
ing segments. In contrast, a correct segment is obtained by
interpolating individual sample points and then applying
the rendering operation to the samples. Since the compo-
siting operation is nonlinear, reordering the interpolation
and the composite steps will incur some error. However,
we expect some amount of coherence to exist between
segments that are separated by less than one voxel. Levoy
proposed an adaptive method to exploit this coherence to
accelerate volumetric raytracing [12]. A comparison be-
tween Levoy’s algorithm and our work is described in
Section 6. Kreeger et al. [9] have concurrently developed a
technique which divides the volume into levels based on
exponential distance from the viewpoint. It creates simple
and regular resampling patterns, utilizing a slice-order
algorithm for volume access and thus partitions the lev-
els along volume slices.

Figs. 2 and 3 contrast the quality of the two-phase algo-
rithm with brute-force, for a labeled RGB and a gray scale
volume, respectively. They use the same set of parameters
used to produce Table 1. The first column contains the
brute-force raycast, the second contains the image pro-
duced by the two-phase algorithm, and the third contains
their absolute difference, multiplied by 10 so that the values
are visible.

Fig. 2 was produced using the Visible Human™ Male
RGB dataset, plus 8-bit labels segmenting the anatomy. The
data was downsampled to 1 mm resolution in all three

axes, to a size of 584 × 340 × 1,878. Opacity parameters were
set to display bone, nerves, circulatory and respiratory sys-
tems. The view is from the neck, looking down the spine. In
Fig. 2, the three rows represent the three different resolu-
tions 160, 320, and 480. The images have been printed at
different resolutions so that they appear the same size in
the diagram. Notice that in all three, a few small areas of
sharp difference appear near edges which border pixels that
have clipped at the back of the frustum.

Fig. 3 is a 256 × 256 × 154 CT image of a canine thorax
with 0.703 mm × 0.703 mm × 0.703 mm voxel spacing,
interpolated from forty slices of 3 mm thickness. In this
case, only the 480 resolution images are shown. The ma-
terial was given a large proportion of diffuse reflectivity
to highlight the walls of the trachea. Notice that errors
seem to be concentrated around sharp changes in the
diffuse reflection.

4 INTERACTIVE NAVIGATION

A major advantage of the two-phase algorithm is that
many of the segments computed in Phase 1 can be used
to construct approximate frames from viewpoints near
the base position. We use them for viewpoints within a
radius δ of the base position, and within angle θ of the
original viewing direction for which the segments were
computed. In particular, at each step we recompute the
first λ levels, but reuse the last L – λ levels. Note that
since the levels near the viewpoint contain fewer seg-
ments, these are inexpensive to compute. Thus, given a
set of segments Sl(p, v), λ ≤ l < L, an approximate view
within (δ, θ) of (p, v) can be quickly computed.

A straightforward implementation of this idea would
initialize the Sl(p, v) data structure from the current
viewpoint. Then a sequence of frames can be quickly
produced under interactive control, until the position or
orientation exceeds one of the thresholds. At this point, a
fresh set of segments Sl(p’, v’) is computed, and the proc-
ess continues. Unfortunately, this produces jerky motion
due to the periodic pauses to recompute the segment
data structure. Instead, we amortize the time to compute
new segments assuming that we can reliably estimate the
location at which the update will be required. This is true
for long sweeps of translation in a fixed direction or ro-
tation about a fixed axis. We describe acceleration tech-
niques for these two cases below.

TABLE 1
COMPARISON OF RENDERING TIMES FOR TWO-PHASE VS. BRUTE-FORCE PERSPECTIVE RAYCASTING

Brute-force Two-phase (L=10)

Data type D W, H Samples
(millions)

Time
(sec.)

Samples
 (millions)

Phase 1
(sec.)

Phase 2
(sec.)

Total
(sec.)

160 4.1 5.54 1.8 2.43 0.04 2.47
320 16.4 21.72 6.3 8.96 0.17 9.13

32-bit RGBL 160

480 65.5 48.49 25.2 19.67 0.31 19.98

160 4.1 3.54 1.8 1.44 0.04 1.48

320 16.4 13.30 6.3 5.75 0.17 5.92

8-bit gray 160

480 65.5 29.74 25.2 13.0 0.31 13.31

The field of view is 60º (both horizontal and vertical). (Intel Pentium® II, 300 MHz, 256 MB RAM, NeTpower ULTRAfx2™.)
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4.1 Viewpoint Translation
Consider the case of forward movement. If we move a dis-
tance ∆p in each frame, then a total of f p= 2δ ∆  frames are
within the scope of a single data structure, S(p, v). The next
predicted data structure is S(p + 2δ, v). Therefore, we amor-
tize the cost to compute S(p + 2δ, v) by completing 1/f of the
new data structure in each step. Then, after f steps, we swap
in the new data structure and repeat.

A pseudocode overview of the forward translation algo-
rithm is shown below in Algorithm 2 and illustrated in
Fig. 4. Notice that while the positions of the first λ levels
move about with the viewpoint, the last L – λ levels are
fixed, relative to the base position p. Thus, the number of
samples within the first λ levels depends upon its offset
from p. This is handled by varying the depth of level λ – 1
by the amount of the offset, δ. Second, for each step forward,

                                      (a)                                                                        (b)                                                                        (c)

                                     (d)                                                                         (e)                                                                       (f)

                                     (g)                                                                         (h)                                                                        (i)

Fig. 2 Comparison of rendering of lableled RGB data. (a) (d) (g) The first column shows a brute-force perspective raycast. (b) (e) (h) The second
column shows the results of the two-phase algorithm. (c) (f) (i) The third column is the absolute difference between the first two, multiplied by 10 to
make the differences visible. (a) Brute-Force, W = 160. (b) Two-Phase, W = 160. (c) Difference X 10, W = 160. (d) Brute-Force, W = 320. (e) Two-
Phase, W = 320. (f) Difference X 10, W = 320. (g) Brute-Force, W = 480. (h) Two-Phase, W = 480. (i) Difference X 10, W = 480.
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one plane of samples should be rendered onto the back of
the last level, so that the total viewing depth remains con-
stant. This is achieved by adding a level L to the back of
the data structure that is updated at every step. We have
omitted this detail in Algorithm 2 to avoid overcompli-
cating the discussion. Finally, notice that for positions be-
hind the base position (p, v), rays near the border of the
frustum may pass outside the border of S(p, v). To avoid
this, we compute S at a slightly larger field of view than
the viewing frustum to accommodate all positions within
radius δ of the base. Specifically, for a square field of view

of angle φ, each rectangle Rl is expanded by a border of

δ φ⋅ tan 21 6  on each side.

ALGORITHM 2. Incremental forward translation.
Move viewing frustum forward to p+offset.
/* Phase 1 */
/* Recompute S0 to Sλ − 2  from position p+offset */

for l from 0 to λ – 2
for depth from Dl to Dl+1 – 1

Sample an array of Wl × Hl points at distance depth
from position p+offset.
Composite onto the back of level l segments, Sl.

end for
end for
/* Recompute Sλ −1  from position p+offset */

for depth from Dλ −1  to Dλ − 1  + offset

Sample an array of W Hλ λ− −×1 1  points at distance

depth from position p+offset.
Composite onto the back of level l segments, Sl.

end for
/* Amortized update of next data structure */
Compute 1/f of the segments Sl(p + 2δ, v), λ  ≤ l < L.
if offset > δ

for l from λ  to L – 1
Swap Sl(p + 2δ,v) in for Sl.

end for
offset = – δ

end if

/* Phase 2 *
for l from 0 to L – 1

Resample segments Sl at screen resolution at position
p+offset.
Composite onto the back of current view.

end for

                                   (a)                                                                             (b)                                                                            (c)

Fig. 3 Rendering comparison of gray-scale data. (a) The result of a brute-force perspective raycasting. (b) The two-phase algorithm. (c) The differ-
ence between the two multiplied by 10. (a) Brute-Force, W = 480. (b) Two-Phase, W = 480. (c) Difference X 10, W = 480.

TABLE 2.
COMPARISON OF RENDERING TIMES FOR COMPLETE TWO-PHASE PERSPECTIVE RAYCASTING

WITH THE TIMES FOR INCREMENTAL FORWARD MOVEMENT AND INCREMENTAL ROTATION

L = 10, λ = 2,
δ = 8, f = 16, θ  =  3°

Complete two-phase
 raycasting

Two-phase
incremental translation

Two-phase
incremental rotation

Data type D W, H Samples
(millions)

Time
(sec.)

Samples
(millions)

Time
(sec.)

Samples
(millions)

Time
(sec.)

160 1.8 2.47 0.12 0.26 0.097 0.27
320 6.3 9.13 0.47 1.09 0.39 1.01

32-bit RGBL 160

480 25.2 19.98 1.88 2.15 1.56 2.17

160 1.8 1.48 0.12 0.16 0.097 0.16

320 6.3 5.92 0.47 0.63 0.39 0.61

8-bit gray 160

480 25.2 13.31 1.88 1.26 1.56 1.24

The field of view is 60º (both horizontal and vertical). (Intel Pentium® II, 300 MHz, 256 MB RAM, NeTpower ULTRAfx2™.)
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The times to compute an incremental forward step using
Algorithm 2 are compared to two-phase raycasting from
scratch in Table 2, using λ = 2  and f = 16. The radius of the
segment data structure scope is set to δ = 8, meaning that
each forward step moves the viewpoint forward by one
voxel. We observe approximately a factor of 9 speedup
from amortizing the cost to compute the back L – λ levels
over 16 steps.

For a fixed step size ∆p, the value of f trades off image
quality for frame rate. Higher values of f amortize the
segment computation over greater number of frames.
However, this corresponds to a higher maximum offset, δ.
At a forward offset position (p+offset, v), the orientation of
segments S(p, v) on the periphery of the view do not
match that of the rays cast from the current position. This
orientation error increases with the offset. Consider a
segment s in level l that is to be approximated at view po-

sition p+offset by resampling Sl(p, v) (see Fig. 5). The seg-
ment is obtained by bilinearly interpolating the four seg-
ments nearest to s, based on their distance from s. How-
ever, segment s is not parallel to any of the neighboring

segments in Sl(p, v), so it is difficult to define such a dis-
tance. One could take an average distance of the individ-
ual sample points in the segments, but the resulting color
and opacity of a segment is a nonlinear function of the

individual sample values, highly dependent on individual
opacities, and tends to emphasize the nearby samples. In

our implementation, each level Sl(p, v) is mapped into a

rectangle Rl at distance Dl, perpendicular to v. Thus, the
resampling depends upon relative distances within the
plane of this rectangle. Near the center of the view, where
the difference in orientation of s from its samples is small,
the distances are based on the position of the front of the
segments. Toward the edges of the view, the weighting is
closer to the middle of the segments. This tends to favor
resampling accuracy in the center of the view.

Fig. 6 shows the labeled RGB view of the Visible Hu-
man™ Male computed at a maximum translational offset of
δ = 8  (recall that the distance units are σ = 1  mm in this
case). The difference between this offset image and the
brute-force image, shown in Fig. 6b, indicates that addi-
tional error beyond that which arose from the two-phase
algorithm is distributed throughout the image, near areas of
high gradient.

4.2 Viewpoint Rotation
For rotation, a data structure S(p, v) is computed for a field
of view f∆v/2 degrees wider than the size of the viewing
frustum in the direction of rotation, where ∆v is the size of
the incremental rotations. This allows a sequence of f rota-
tions before rays reach the edge of the data structure. In
each step, 1/f of the next data structure, S(p, v + f∆v), is
computed. This is illustrated in Fig. 7, and outlined in Al-
gorithm 3. Notice that levels 0 through λ – 1 do not need to
be recomputed at each step, assuming that the field of view
is increased by f∆v/2. Refer to the rightmost columns in
Table 2 for measurements of the performances of incre-
mental update. These numbers are quite similar to those
measured for forward translation. The number of steps is
f = 16 and the rotation step size ∆v = 0.325°.

Fig. 5. A 2D illustration of the resampling of S during translation. A ray r
cast from position p+offset (red) is resampled in level 2 using segments
σ1 and σ2 cast from position p (gray). The bilinear interpolation is
based on the relative positions of r,  σ1, and  σ2 projected into R2.

Fig. 4. 2D depiction of forward translation. Gray lines represent the view
from the original position, while black lines indicate the position of the
translated view. In this example, λ = 2; i.e., the first two levels are re-
computed (the recomputed segments are depicted in red), while the
last two (green) are simply resampled from the segment data structure
from the new position. Note that the depth of level λ is reduced by the
offset distance, so that level λ – 1 samples just up to the front of the
original S2.
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ALGORITHM 3. Incremental rotation about a fixed axis.
Rotate viewing frustum to v+offset at position p.
/* Phase 1 */
/* Update next data structure */
Compute 1/f of the segments Sl(p, v + 2θ), λ < l < L
if offset > θ

Recompute levels 0 through λ – 1 from orientation v + 2θ
at position p.
for l from λ to L – 1

Swap Sl(p, v + 2θ) in for Sl.
end for
offset = –θ

end if

/* Phase 2 */
for l from 0 to L – 1

Resample segments Sl at screen resolution at orienta-
tion v+offset.
Composite onto the back of current view.

end for

Rotations tend to have greater resampling accuracy at
large offsets than translations, because no error in the ori-
entations of the segments occurs. If the point of view re-
mains at p during rotation, the orientations of the segments
at the new viewing direction are consistent with those al-
ready in the data structure. Thus, the relative distance be-
tween a segment at the new viewing direction and its four
nearest neighbors is well defined, and is handled properly
by the resampling on the projected rectangle. Fig. 8 shows
the labeled RGB view of the Visible Human™ Male com-
puted at a maximum rotational offset of θ = –3.0°. In Fig. 8b,
the absolute difference from the brute force raycast shows
little variation beyond that already attributed to the two-
phase algorithm.

5� SUBCUBE MAINTENANCE

Voxel data sets suitable for navigation are typically quite
large and may not fit into main memory. Instead, data within
the current view frustum must be paged in from disk during
navigation. In particular, an n × n × n subcube of the volume
enclosing the view frustum is maintained within main mem-
ory. The subcube must be updated as the view position and
orientation change without significant impact on the frame
rate. For example, consider a subcube with origin located at
(x0, y0, z0) within an isotropic volume data set. To move the
subcube one voxel in the positive x direction, an n × n yz-
plane of data must be extracted from the volume and in-
serted at the right side of the cube, and an n × n plane (x = x0)

                                                                (a)                                                                                             (b)

Fig. 6. Illustration of translational offset error. The same view as in Fig. 2 is rendered using the two-phase algorithm with translational offset of 8σ.
the difference with respect to brute-force raycasting (Fig. 2g) is shown in (b). (a) Two-phase algorithm, 8σ forward-offset, W = 480. (b) Differ-
ence x 10, W = 480.

Fig. 7 The initial segment data structure is depicted in gray, and should
be 2θ wider that the field of view. The next segment data structure for
right rotation is depicted in red.
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must be deleted from the left side of the cube. These two
steps can be combined by writing the new plane of data into
the locations vacated by the deleted plane.

The organization of the volume on disk and the subcube
in memory greatly affect the efficiency of subcube update
operations. Mapping functions must be specified for both
which generate linear address offsets from spatial coordi-
nates. Let V(x, y, z) and C(x, y, z) denote the mapping func-
tions for the volume and subcube, respectively.

First, consider the retrieval of volume data from disk. The
time to read an n × n plane tends to be dominated by the la-
tency involved in initiating block transfers. This is because
the data within an arbitrary an n × n plane is not contiguous.
For example, in a standard 3D array layout
( V x y z x N y N N zx x y, ,1 6 = + + ), one must usually seek to

the beginning of each row, and in the worst case—a yz-
plane—must seek for every voxel. The overhead can be am-
ortized somewhat by loading more than one plane at a time.
To further reduce this overhead, we use a block-oriented
mapping in which b × b × b blocks of the volume are stored in
contiguous addresses. The subcube is then maintained on b-

voxel boundaries. (Nx, Ny, Nz, and n must be divisible by b,
which may require padding the volume data set by a small
amount.) A b-unit move along any axis loads n2/b2 new

blocks from disk, and each block contains b3 contiguous vox-
els. In general, the block-oriented mapping is described by

      V x y zb , ,1 6 =

                              b
x
b x N b

y
b ybb x b
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For the first voxel in a block, in which x, y, and z are multi-
ples of b, this reduces to

V x y z b x N by N N zb x x y, ,1 6 = + +2                (5)

The goal for the layout of the subcube is a mapping that
is independent of subcube position, so that data already
loaded need not be moved when the subcube moves. Fur-
thermore, the mapping should be simple to compute since
it will be computed every time a sample is accessed. The
mapping that we propose is

C x y z x ny n z
n

, ,
mod

1 6 4 9= + + 2
3                      (6)

For any n × n × n subcube with origin located at (x0, y0 z0), it

is simple to show that C maps the n3 subcube voxels, I(x, y,
z) for x x x n0 0≤ < + , y y y n0 0≤ < + , z z z n0 0≤ < +

one-to-one onto the integers 0, 1, 2, …, n3 – 1. Therefore,
each voxel of any subcube has a unique address, and new
planes of data written into the subcube will overwrite the
planes that are to be deleted from the previous subcube
position. Note also that if n is chosen to be a power of two,
C is particularly inexpensive to compute.

The performance of the block-oriented subcube update is
contrasted below in Table 3 with that of a standard array lay-
out. The time to load 16 × 256 × 256 and 256 × 256 × 16 slabs
of voxels are measured, corresponding to motion along the x
and z axes, respectively. Times were averaged over many
successive loads. The timings vary greatly depending upon
the likelihood that a given block transfer loads data already
residing on the system file cache. If one is moving around
within a small subregion of the volume, the hit rate can be
essentially 100 percent. In contrast, a long, straight flight
down the z-axis tends to incur file cache misses on every slab
load. We bound these behaviors by presenting “best” and
“worst” case paths which tend to maximize and minimize,
respectively, file cache performance.

                                                                 (a)                                                                                             (b)

Fig. 8 Illustration of rotational offset error. The same view as in Fig. 2 is rendered using the two-phase algorithm with rotational offset of –3 de-
grees. The difference between this (a) and the brute-force raycasting (Fig. 2g) is shown is (b). (a) Two-phase, −3 degree rotational offset, W = 480.
(b) Difference x 10, W = 480.



252 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL. 4,  NO. 3,  JULY-SEPTEMBER 1998

Note that in the x-direction, a 3D array layout generates
n2 = 2562 separate, noncontiguous data transfers. The over-
head required to initiate so many block transfers appears to
dominate the block load, independent of whether the data
is in the file cache or retrieved from disk (see the next-to-
last column of Table 3). Along the z-axis, the number of
block reads is reduced to bn = 256 × 16 for an array layout.
The block-oriented layout requires at most (n/b)2 = 256
block transfers along any of the axes. Thus, when the file
cache performance is good, the transfer times reduced by
more than an order of magnitude. In the worst case, the
block-oriented transfer rate becomes dominated by file
cache misses, although this is still a factor of two improve-
ment over the array layout.

Finally, note that the subcube to some extent decouples
the layout of the volume data set from the data organiza-
tion required by the two-phase raycasting algorithm. For
instance, blocks could be stored in a compressed format.
(The volume mapping function would need to be modi-
fied.) During a subcube update, blocks would be loaded,
decompressed, and then inserted into the subcube. This
technique trades the reduction in disk space and I/O
bandwidth requirements against increased CPU cycles. As
a second example, nonisotropic data could be stored in the
block-oriented format, and resampled to the subcube reso-
lution after loading from disk.

6� DISCUSSION

Numerous techniques have been proposed for accelerating
the volumetric raycasting process. Many of these focus on
avoiding unnecessary sampling steps. We discuss some of
the main techniques in the context of our volume naviga-
tion scenario.

Levoy [13] proposed early termination of rays cast front-
to-back based on their accumulated opacity. This method
can produce dramatic improvements when raycasting
through an entire optically dense volume. We would expect
this technique to be less effective when navigating within a
depth-limited frustum, since rays are already short. Fur-
thermore, the method does not appear to be compatible
with our two-phase algorithm. Short segments are rendered
independently, and are far less likely to saturate than long
rays. Thus, the potential gain from early termination of the
segments is much smaller. In addition, it is difficult for a
segment to take advantage of the accumulated opacity be-
tween the viewpoint and the front of that segment, because
the segment will be reused from different positions that
may present less accumulated opacity.

Many methods have been suggested for skipping over
transparent regions of the volume by encoding informa-

tion about the data’s coherence into the volume. This
tends to be most effective when the voxel opacities are
known apriori. Levoy [13] describes an algorithm for ray-
casting though an octtree-encoded data structure. Zuider-
veld et al. [24] encode transparent voxels with the dis-
tance, d, to the nearest nonempty voxel, thus allowing the
next d voxels along a ray to be skipped. Such techniques
may be able to further improve the speed of our algo-
rithm. We have experimented with a very limited form of
encoding in our RGB-label implementation. We reserve
one label value in each voxel I(x, y, z) to indicate that the
current voxel and seven neighbors, I(x + i, y + j, z + k), i, j,
k ∈ {0, 1} are all transparent. We use this information to
skip most of the computation associated with a single
sample in this empty region.

Levoy [12] proposed an adaptive refinement technique
that takes advantage of coherence within adjacent rays. In
Levoy’s method, a sparse grid of rays is cast initially. In
regions of sharp contrast, the number of rays cast is adap-
tively increased, while in highly coherent areas of the image
the inter-ray pixels are simply interpolated. Note that this is
the coherence that our two-phase algorithm uses to justify
the casting of fewer rays near the viewpoint. In our algo-
rithm, the inter-segment resolution is nonadaptive how-
ever. It may be possible to improve image quality near the
viewpoint by computing extra segments in high contrast
regions using this technique.

One method that has been used to accelerate the com-
putation is to convert the volume data into a surface-
based representation using an isosurface extraction algo-
rithm such as Marching Cubes [15], [14]. This preprocess-
ing step is time consuming, but is done only once. The
resulting isosurface representation is compatible with the
standard 3D rendering pipeline, and thus takes advantage
of standard 3D graphics acceleration hardware. This
method has proven useful for navigating through data
that contains reasonably well defined surfaces, such as the
colon wall within 3D radiological images [16], [21]. A dis-
advantage of this method is that much of the information
contained within the 3D data set is lost in the conversion
to isosurfaces.
Various techniques have been suggested that use 2D or 3D
texture-mapping hardware to accelerate volume rendering
[5], [20], [22], and [23]. Many of these require 3D texture
mapping hardware, which is not often available on PC
graphics accelerators. Our implementation uses only 2D
texture mapping, which is often implemented even in rela-
tively inexpensive PC graphics hardware.

TABLE 3
COMPARISON OF 3D BLOCK LOAD TIMES FOR X- AND Z-ORIENTED BLOCKS OF DATA FROM A LARGE VOLUME FILE

Block-oriented (b = 16) 3D array

16 × 256 × 256
(msec.)

256 × 256 × 16
(msec.)

16 × 256 × 256
(msec.)

256 × 256 × 16
(msec.)

“Warm” file cache 34 30 930 120

“Cold” file cache 455 940 1,100

3D array is a standard x-y-z layout.
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7� VOLUME NAVIGATION APPLICATION

A volume navigation application was implemented in order
to evaluate the methods presented. A view of the main
navigation console is shown in Fig. 9. The navigation win-
dow, in the upper left of the console, displays the volume
navigation view. Axial, Coronal, and Sagittal (ACS) slices
from the current position are displayed in separate panes.
These slices are updated only during a pause in user input,
to avoid impacting the navigation speed. Controls allow the
user to move forward or backward, or to rotate right, left,
up, or down. Full control of the volume rendering parame-
ters, such as number of levels, resolution and depth of each
level, sampling rate, navigation window size, movement
increment, distance between data structure updates, color
maps, lighting, etc., can be modified in auxiliary windows.
The application can take 8-bit gray scale, 24-bit color, and
32-bit color-plus-label voxel data types as input. Sampling
can be trilinear or nearest neighbor at each level.

A restricted form of lighting is implemented. It assumes
that the light is a point source positioned at the viewpoint.
The lighting computation is simplified because the light
and ray directions are the same for all rays. The amount of
diffuse reflection can thus be estimated at any sample point
as the difference of the point’s two neighbors along that ray.

We do not normalize the gradient in this computation.
Larger point differences generate greater diffuse reflections.
More-general lighting models are compatible with the algo-
rithm, but highly accurate models are less critical during
fast, reduced-resolution navigation relative to the extra
computation incurred.

During a pause in user input, the application can be set
to use the idle time to render and display progressively
higher resolutions of the current position. Additional delay
is used to progressively extend the depth of the rays by
blending samples from a reduced-resolution volume onto
the back of the rays.

7.1 Implementation
The volume navigation application is a multithreaded im-
plementation, whose major rendering blocks are illustrated
in Fig. 10. Recast and Update comprise Phase 1 of the algo-
rithm. Recast recomputes the first λ levels of segments from
the current viewpoint. Update completes 1/f of the segment
rendering of levels λ through L – 1 from the predicted fu-
ture location. Their computations consist primarily of de-
termining sample positions, trilinear resampling, lighting,
and blending. Display corresponds to Phase 2. It resamples
and blends each level at the screen resolution. In our im-
plementation, Display is computed almost entirely on the

Fig. 9. Screen capture of our volume navigation application.
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graphics acceleration hardware. The segment data is as-
sembled into textures and dumped onto the accelerator for
resampling and alpha blending.

The three main rendering blocks are assigned three differ-
ent threads, and can be executed concurrently. The three
threads synchronize with each other after each incremental
movement. Update tends to dominate the computation time,
and so it is internally multithreaded in order to improve the
load balance. Note that the Recast and Update computations
are independent, but Display requires the results from Re-
cast. To allow these two routines to operate in parallel, Dis-

play produces the frame from the previous site, (pi, vi) while
Recast is computing the new segments for the next position,

p vi i+ +1 1,2 7 . When a change in the current motion occurs, the

predicted future location is no longer correct, and so the
segment data structure is reinitialized for the new motion.

A fourth major block, Subcube, maintains the subcube in
main memory. This block receives its own thread at the
start of the program and runs throughout the application as
an independent routine, monitoring the current user posi-
tion, and updating the subcube when the user begins to get
too close to one of the subcube boundaries. It is essential
that I/O runs on an independent thread, even on a single-

CPU platform, because its computations must be amortized
over many frames.

During a pause in user input, the view is refined in the
Enhance block in two ways. First, a new set of segments is
computed at increased resolution (the factor increase can be
specified). Next, we begin extending the ray depth by add-
ing an extra layer of segments onto the back of the current
view, and progressively updating the view. These extended-
depth segments are obtained by interpolating from a down-
sampled copy of the volume that fits entirely within main
memory (this copy is used also to obtain the ACS slices in
the auxiliary windows).

7.2 Performance Measurement
The volume navigation application was evaluated on a
dual-CPU, 300 MHz Intel Pentium® II platform. The
platform was equipped with 256 MB RAM and a NeT-
power ULTRAfx2™ graphics accelerator card, running the
Windows® NT 4.0 operating system. Times were measured
for both 8-bit gray scale data (using both color and opacity
look up tables) and 24-bit RGB plus 8-bit label data (the
labels are used to look up opacity). Lighting was applied
to each sample, with the light is positioned at the view-
point.

Fig. 10. Illustration of the major blocks of the multithreaded volume navigation application.

TABLE 4
COMPARISON OF TOTAL UPDATE TIMES FOR TWO-PHASE PERSPECTIVE RAYCASTING

WITH THE TIMES FOR INCREMENTAL FORWARD MOVEMENT AND INCREMENTAL ROTATION

Data type Two-phase
incremental translation

(msec.)

Two-phase
Incremental rotation

(msec.)

32-bit RGBL 153 152

8-bit gray 105 106

The field of view is 60º (both horizontal and vertical). (Intel Pentium® II, 300 MHz, 256 MB RAM, NeT-
power ULTRAfx2™.) Additional rendering parameters are L = 10, λ  = 2, δ  = 8, f = 16, D = W = H = 160.
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Table 4 shows the times for incremental movement
within the multithreaded application. Translation and Ro-
tation represent the average time to compute a single frame
during a long sequence of forward and rotate steps, respec-
tively. These represent “perfect” prediction by the algo-
rithm in computing the next segment data structure. When
the direction of motion changes, the data structure must be
recomputed, using Algorithm 1.

The main rendering subroutine, responsible for interpo-
lating, shading, and alpha blending an individual sample
point was hand optimized in assembler, making use of the
Intel MMX™ instruction set. The average cycle counts for
these operations are broken down in Table 5 for 8-bit gray,
24-bit RGB, and 32-bit labeled RGB data. In the gray scale
sample and blend routine, the opacity is obtained by table
look up on the interpolated gray data. In RGB, a gray value
is computed from the interpolated red, green, and blue
channels, and opacity is then mapped through a look up
table. RGBL sampling uses a special data encoding to mark
empty voxels whose neighbors are also empty. A sample
point lying in this neighborhood does not contribute to the
ray and can be skipped. We measure that on average, 32
percent of our voxel samples are skipped in way. Thus, the
total time is lower than the RGB sampling time.

8 CONCLUSIONS

The algorithms presented provide considerable speedup
over brute-force perspective volumetric raycasting. They
provide a unique balance between speed and quality for
interactive volume rendering by taking advantage of inter-
frame coherence. There are a large number of parameters
available to trade off these two goals, and we expect that
the settings we have chosen can be improved.

For each successive frame during a pause, we succes-
sively recompute high-resolution renderings for level 0,
then level 1, etc., and update the view at each step. Thus,
the longer the idle time, the farther back into the view the
high quality rendering proceeds. Instead of, or in addition
to increasing the quality of the rendered segments, one can
incrementally increase the depth of the viewing frustum.
This can be implemented by adding a level L + 1 to the back
of the view. We then iteratively sample at depth Dl, Dl + 1,
etc., and update level L + 1 in each iteration. This will re-
quire modification of the dynamic I/O procedure that
maintains the current volume region in RAM to obtain
samples beyond the end of the normal view frustum. How-
ever, after a band of distant data is composited, it can be
deleted to make room for the next band.

Notice that it is inexpensive to create stereo pairs using
the segment data structure S, as long as the two eye posi-
tions and orientations are within (δ, θ) of the central view.
This requires computing the less-expensive front levels, 0
through λ – 1, at two different positions. The higher levels,
λ through L – 1, are computed at a single central position
shared for both eye positions. The technique of reprojecting
short ray segments has been used by [7] to accelerate stereo
volume rendering. Earlier work by [1] accelerated the com-
putation of right-eye views by reprojecting individual sam-
ples from the rays of the left eye.
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